
UNIVERSITY OF CALGARY

Modelling Agent Conversations for Action

by

Roberto Augusto Flores-Méndez

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 2002

© Roberto Augusto Flores-Méndez 2002

ii

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled “Modelling Agent Conversations for Action”

submitted by Roberto Augusto Flores-Méndez in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Supervisor, Robert C. Kremer, Department of Computer Science

Brian R. Gaines, Department of Computer Science

Saul Greenberg, Department of Computer Science

Robert W. Brennan, Department of Mechanical and
Manufacturing Engineering

External Reader, Hector J. Levesque, University of Toronto

Date

iii

ABSTRACT

Conversations are sequences of messages exchanged between interacting software agents.

For conversations to be meaningful, agents ought to follow conversational principles

governing the exchange of messages at any point in a conversation. These principles must

be defined in publicly verifiable terms (if they are to be used in open environments) and

must allow the composition of flexible conversations (if they are to account for the context

in which they occur). The main contribution of this thesis is to define a unified model for

conversations for action that fulfills these requirements. The conversational principle in

this model is the negotiation of shared social commitments, which entails the adoption and

discard of obligations to act. This principle is encoded using conversation policies, which

govern the form of conversations according to the observable state of interacting agents.

The applicability of this model is illustrated through the modelling of two example

conversations: one on the Contract Net Protocol, and the second on an electronic bookstore

scenario.

iv

ACKNOWLEDGEMENTS

I once read that writing a book is like travelling to an unfamiliar city with only a visitors’

guide: with it one can tour the main landmarks and recommended sights, but the lasting

memories are those of the people one meets and the relationships one forges. Pursuing a

doctoral degree was the same for me: I fulfilled the academic requirements while, in the

process, meeting many people who enriched both my personal and academic life—to all of

them, my utmost gratitude.

First of all, I would like to thank my supervisor and friend Rob Kremer, whose constant

support and encouragement was central to the successful completion of this thesis. I am

also grateful to the members of my supervisory committee: Bob Brennan, Brian Gaines,

Saul Greenberg and Hector Levesque, whose thoughtful suggestions greatly helped to

improve the quality of the work presented in this thesis.

In addition, I am thankful to colleagues that at one moment or another during these years

gave me their time and support, particularly Douglas Norrie (who was a source of

inspiration and advice), Brad Jones, Michal Pechoucek, Martyn Fletcher, Frank Maurer,

Jörg Denzinger, Douglas Walker, Niek Wijngaards, Fuhua Lin, and the researchers at the

Intelligent Systems Group at the University of Calgary.

I am indebted to Andy and Karyn Kremer for their superb job proofreading an earlier

version of this thesis (needless to say, any errors in this version are mine alone). Finally, I

cannot thank enough my wife Cecilia and children Ricardo and Alejandro, who always had

a way of reminding me that there is (good) life besides school.

This work would not have been possible without the support of the Natural Sciences and

Engineering Council of Canada (NSERC), Smart Technologies, Inc., the Alberta Software

Engineering Research Consortium (ASERC) and the Alberta Informatics Circle of

Research Excellence (iCORE).

v

To Cecilia, Ricardo and Alejandro.

 The happiness of life is made up of minute fractions—the little, soon-

forgotten charities of a kiss or smile, a kind look or heartfelt compliment.

Samuel Taylor Coleridge, poet (1772-1834)

vi

Table of Contents

Approval page .. ii

Abstract ... iii

Acknowledgements ... iv

Dedication .. v

Table of Contents .. vi

List of Figures ... xiii

 Chapter 1 Introduction .. 1
1.1 Aim... 1

1.2 Motivation .. 1

1.2.1 Agent Communications.. 2

1.2.2 Conversations... 2

1.3 A Model for Agent Conversations ... 3

1.3.1 Actions ... 4
1.3.2 Social Commitments and Obligations.. 5

1.3.3 Speech Acts and Illocutionary Points .. 6

1.3.4 Conversation Policies... 6

1.3.5 Example: Giving the Time ... 7

1.4 Research Objectives ... 10

1.5 Thesis Overview... 12

 Chapter 2 Related Work.. 13
2.1 Overview .. 13

2.2 The Study of Natural Language ... 13

2.3 Speech Act Theory... 14

2.3.1 Speech Acts and ACL .. 15

2.4 Speech Act Semantics in ACL... 15

2.4.1 Mental Semantics ... 15

vii

2.4.2 Social Semantics .. 17

2.5 Conversational Sequencing in ACL... 18

2.5.1 Conversation Protocols .. 18

2.5.2 Conversation Policies... 19

2.5.3 Conversations in Current ACL... 19

2.5.4 Requirements for a Model for Conversations .. 20

2.6 Summary .. 23

 Chapter 3 Modelling Agent Conversations for Action .. 24
3.1 Overview .. 24

3.2 Actions ... 26

3.2.1 Individual and Composite Actions... 26

3.3 Communicational Actions.. 29

3.3.1 Speech Acts .. 30

3.3.2 Other Basic Joint Actions... 31

3.3.3 Events and Utterances .. 33

3.3.4 Scheduled Actions.. 34

3.4 Social Commitments .. 35

3.4.1 Shared Social Commitments .. 36

3.4.2 Operations .. 36

3.5 Obligations ... 37

3.6 Agents .. 37

3.7 Negotiating Shared Social Commitments .. 42

3.8 Illocutionary Points .. 44

3.8.1 Propose... 44

3.8.2 Accept .. 44

3.8.3 Reject.. 45

3.8.4 Counter... 45

3.9 Conversation Policies... 45

3.9.1 Policy 1: Adopting Obligations to Reply... 46

viii

3.9.2 Policy 2: Discarding Obligations to Reply... 48

3.9.3 Policy 3: Agreeing to Uptake Social Commitments 54

3.9.4 Policy 4: Adopting Obligations to Propose.. 54

3.10 Normative Agent Societies .. 61

3.10.1 Joint Activities ... 61

3.10.2 Societies ... 62

3.11 Summary .. 63

 Chapter 4 Example: The Contract Net Protocol ... 64
4.1 Overview .. 64

4.2 The Contract Net Protocol ... 64

4.3 Information... 65

4.4 Actions ... 66

4.4.1 Bidding... 67

4.4.2 Evaluating a Bid... 68

4.4.3 Executing a Contract .. 68

4.5 Social Commitments .. 69

4.5.1 Commitment to Bid.. 69

4.5.2 Commitment to Evaluate a Bid .. 70

4.5.3 Commitment to Execute a Contract ... 70

4.6 Illocutionary Points .. 71

4.6.1 Proposing to Bid... 71

4.6.2 Accepting or Rejecting to Bid.. 72

4.6.3 Submitting a Bid for Evaluation .. 72

4.6.4 Accepting To Evaluate a Bid ... 74

4.6.5 Awarding a Contract .. 75

4.6.6 Accepting the Evaluation of a Bid ... 77

4.6.7 Accepting or Rejecting the Awarding of a Contract 77

4.6.8 Executing a Contract and Submitting Results.. 78

4.6.9 Accepting the Results of a Contract... 79

ix

4.7 Participants... 79

4.7.1 Manager.. 80

4.7.2 Contractor... 86

4.8 The Contract Net Protocol as a Joint Activity ... 95

4.8.1 Interactions... 96

4.9 Contract Net Society .. 98

4.10 Example Conversation: Executing a Contract ... 98

4.10.1 Requesting a Bid .. 99

4.10.2 Accepting to Bid .. 100

4.10.3 Submitting a Bid .. 102

4.10.4 Accepting a Bid for Evaluation.. 102

4.10.5 Awarding a Contract .. 105

4.10.6 Accepting the Awarding of a Contract... 105

4.10.7 Submitting Results of Executing a Contract .. 107

4.10.8 Accepting the Results of a Contract... 107

4.11 Example Proof.. 108

4.11.1 Assumptions... 110

4.11.2 Supporting Predicates... 110

4.11.3 Proof... 113

4.12 Summary .. 125

 Chapter 5 Example: eBookstore Shopping ... 127
5.1 Overview .. 127

5.2 eBookstore Shopping ... 127

5.2.1 Payable Actions.. 128

5.2.2 Conversation Policies... 129

5.3 Information... 131

5.4 Actions ... 134

5.4.1 Selling .. 134

5.4.2 Delivering... 135

x

5.4.3 Paying... 137

5.5 Social Commitments .. 138

5.5.1 Commitment to Sell ... 138

5.5.2 Commitment to Pay.. 138

5.5.3 Commitment to Deliver.. 139

5.5.4 Commitment to Hand Out a Parcel .. 139

5.6 Illocutionary Points .. 140

5.6.1 Proposing to Sell .. 140

5.6.2 Accepting to Sell .. 141

5.6.3 Proposing to End a Sale ... 141

5.6.4 Accepting to End a Sale ... 142

5.6.5 Proposing to Deliver .. 143

5.6.6 Accepting to Deliver .. 144

5.6.7 Handing Out a Parcel ... 145

5.6.8 Proposing to Pay .. 145

5.6.9 Accepting to Pay .. 146

5.6.10 Submitting a Payment .. 146

5.6.11 Accepting Payment .. 147

5.7 Participants... 148

5.7.1 Buyer .. 148

5.7.2 Seller .. 155

5.7.3 Carrier .. 164

5.8 eShopping as a Joint Activity... 169

5.8.1 Interactions... 169

5.9 eBookStore Society.. 171

5.10 Example Conversation: Buying Books .. 171

5.10.1 Requesting to Buy Books... 173

5.10.2 Accepting to Sell Books... 175

5.10.3 Requesting to Pay Books ... 175

5.10.4 Paying Books ... 177

xi

5.10.5 Proposing to End Sale .. 179

5.10.6 Accepting to End Sale.. 182

5.10.7 Requesting to Deliver Books ... 183

5.10.8 Requesting to Pay Delivery.. 184

5.10.9 Paying Delivery.. 185

5.10.10 Accepting Books Delivery ... 186

5.10.11 Requesting to Receive Books... 188

5.10.12 Accepting Books .. 188

5.10.13 Conclusion.. 189

5.11 Summary .. 191

 Chapter 6 Evaluation and Conclusion... 192
6.1 Overview .. 192

6.2 Revisiting the Requirements .. 192

6.2.1 Publicly Verifiable Semantics.. 193

6.2.2 Conversational Composition.. 195

6.3 Implementation .. 197

6.4 Research Contributions .. 203

6.5 Future Research.. 206

6.6 Revisiting Research Objectives.. 206

6.6.1 Related Work ... 207

6.6.2 Requirements.. 207

6.6.3 A Model for Conversations.. 208

6.6.4 Application... 208

6.6.5 Future Work ... 208

6.7 Fulfilling the Aim... 208

6.8 Conclusion.. 209

 References ... 210

 Appendix A Z and Object-Z Tutorial.. 214

xii

A.1 Overview .. 214

A.2 The Z Specification Language ... 215

A.2.1 Types .. 215

A.2.2 Objects.. 215

A.2.3 Propositions.. 216

A.2.4 Sequences ... 217

A.2.5 Bags.. 218

A.2.6 Schemas.. 219

A.2.7 Axiomatic descriptions... 220

A.3 The Object-Z Specification Language ... 221

A.3.1 Classes.. 221

A.3.2 Inheritance.. 222

A.3.3 Polymorphism .. 223

A.4 Selected Z and Object-Z Notations .. 224

xiii

List of Figures

Figure 1. UML class diagram for basic actions in the model for conversations.................... 5

Figure 2. UML class diagram for the joint action ToGiveTheTime. 9

Figure 3. UML interaction diagram for Alice and Bob's conversation to get the time........ 11

Figure 4. UML diagram of main classes in the model for conversations. 25

Figure 5. Definition of the class Agent (part 1 of 3). ... 39

Figure 6. Definition of the class Agent (part 2 of 3). ... 40

Figure 7. Definition of the class Agent (part 3 of 3). ... 41

Figure 8. AUML interaction template for the Protocol for Proposals. 43

Figure 9. Policy 1: A proposal commits addressee agents to reply. 47

Figure 10. Policy 2: A reply releases agents of the obligation to reply (part 1 of 2). 49

Figure 11. Policy 2: A reply releases agents of the obligation to reply (part 2 of 2). 50

Figure 12. Axiom getProposeForAccept: To retrieve a past proposal given an acceptance.

.. 52

Figure 13. Axiom getProposeForReject: To retrieve a past proposal given a rejection...... 53

Figure 14. Policy 3: Acceptances lead to the uptake of commitments and obligations....... 55

Figure 15. Policy 4: Proposing to discharge an adopted social commitment to action. 58

Figure 16. Policy 5: Proposing to adopt a social commitment to action (part 1 of 2). 59

Figure 17. Policy 5: Proposing to adopt a social commitment to action (part 2 of 2). 60

Figure 18. Definition of the class Manager (part 1 of 2). .. 81

Figure 19. Definition of the class Manager (part 2 of 2). .. 83

xiv

Figure 20. Definition of the class Contractor (part 1 of 3). ... 90

Figure 21. Definition of the class Contractor (part 2 of 3). ... 92

Figure 22. Definition of the class Contractor (part 3 of 3). ... 94

Figure 23. Definition of the Contract Net Protocol as a joint activity. 96

Figure 24. Protocol with the interactions in the joint activity ContractNet. 97

Figure 25. UML interaction diagram for a Contract Net conversation................................ 99

Figure 26. State of shared social commitments and obligations of the manager and

contractor in the Contract Net conversation example (part 1 of 2)............................ 101

Figure 27. State of shared social commitments and obligations of the manager and

contractor in the Contract Net conversation example (part 2 of 2)............................ 104

Figure 28. Snapshot of the simulation of the Contract Net conversation example............ 109

Figure 29. PayablePolicy1 (Policy 6): Adopting/discharging obligations to request a

payment based on the negotiation of a commitment to a payable action (part 1 of 2).

.. 130

Figure 30. PayablePolicy1 (Policy 6): Adopting/discharging obligations to request a

payment based on the negotiation of a commitment to a payable action (part 2 of 2).

.. 131

Figure 31. PayablePolicy2 (Policy 7): Discharging obligations to request a payment given

that a commitment to pay has been adopted. ... 132

Figure 32. Definition of the class Buyer (part 1 of 2). ... 149

Figure 33. Definition of the class Buyer (part 2 of 2). ... 151

Figure 34. Definition of the class Seller (part 1 of 3). ... 157

Figure 35. Definition of the class Seller (part 2 of 3). ... 159

Figure 36. Definition of the class Seller (part 3 of 3). ... 161

xv

Figure 37. Definition of the class Carrier (part 1 of 2). .. 165

Figure 38. Definition of the class Carrier (part 2 of 2). .. 166

Figure 39. Definition of the joint activity eBookStoreShopping.. 170

Figure 40. Petri net diagram with the interactions in the joint activity eBooksShopping. . 172

Figure 41. UML interaction diagram for an eBooksShopping conversation...................... 174

Figure 42. State of shared social commitments and obligations of the buyer in the

eBooksShopping conversation example (part 1 of 2). .. 176

Figure 43. State of shared social commitments and obligations of the buyer in the

eBooksShopping conversation example (part 2 of 2). .. 177

Figure 44. State of shared social commitments and obligations of the seller in the

eBooksShopping conversation example (part 1 of 3). .. 179

Figure 45. State of shared social commitments and obligations of the seller in the

eBooksShopping conversation example (part 2 of 3). .. 180

Figure 46. State of shared social commitments and obligations of the seller in the

eBooksShopping conversation example (part 3 of 3). .. 181

Figure 47. State of shared social commitments and obligations of the carrier in the

eBooksShopping conversation example (part 1 of 2). .. 184

Figure 48. State of shared social commitments and obligations of the carrier in the

eBooksShopping conversation example (part 2 of 2). .. 185

Figure 49. Example PFP instance interaction between a buyer and a seller...................... 197

Figure 50. Snapshot of the simulation of the eBookstore conversation example. 199

1

Chapter 1

Introduction

1.1 Aim

The aim of this thesis is to define a formal model for the structured specification of

software agent conversations for action.

This chapter introduces the motivations for developing such a model for conversations.

This is followed by a brief introduction of the model, along with an example illustrating its

dynamics and application. Lastly, this chapter ends with a list of research objectives and

the outline of the thesis.

1.2 Motivation

Software agents are autonomous, collaborative problem solving entities that are

increasingly being applied as a key abstraction for developing software applications

(Jennings & Wooldridge, 1998). One of the main characteristics of agent-based systems is

that agents seek to interact among themselves to perform tasks that help them to meet their

(individual or collective) objectives. For example, agents request and offer services,

schedule the delivery of parts for manufacturing processes, and negotiate the best possible

deal when shopping for goods.

2

1.2.1 Agent Communications

Although agents could interact through any action that affects their common environment,

this thesis is particularly interested in agents that interact using an agent communication

language (Genesereth & Ketchpel, 1994). In this view, software agents are conceptualized

as purely communicational entities (Ferber, 1999) that only interact by exchanging

messages through a communications channel.1

1.2.2 Conversations

Conversations are the meaningful exchange of messages between interacting agents. In

agent-based systems, conversations are traditionally specified using conversation protocols

(which are static structures specifying the sequences of messages making a conversation)

and conversation policies (which are rules of inference specifying the principles governing

the connectedness of message sequences during conversations).

Although policies and protocols are normally seen as competing techniques, this research

subscribes to the view that a protocol is a particular conversation structure that should be

constructed following the principles specified by conversation policies. However, it still

remains a challenge for the agent communication language community to define the

properties and principles that conversation policies should represent (Greaves, et al., 1999).

This thesis presents a model for conversations in which conversations are guided by

policies based on the principle that agents requesting the performance of actions must

negotiate the uptake of shared social commitments.

1 Clark (1996) states that humans use both linguistic and non-linguistic signals (i.e., events that can be
observed from the shared environment of interaction) when communicating. For example, that Bob has
moved a chair as requested by Alice, and that this action is apparent to both of them (for details on mutual
beliefs refer to (Fagin, et al., 1995)), then it may not be required that Bob tells Alice that he has done the
action. In contrast, this thesis assumes that software agents do not have any sensors to perceive each other’s
actions and no other shared environment except for a communications channel through which to exchange
messages. The main reason for this abstraction is that (unlike humans) software programs do not have a
natural shared environment (c.f., our “real world”) and any assumptions on the characteristics of any given
environment may compromise the generality of this thesis.

3

1.3 A Model for Agent Conversations

In their influential book on cognition and social action, Winograd and Flores (1987) argue

that the meaning of utterances is given by the patterns of commitment entered into by

speaker and hearer by virtue of taking part in a conversation. In this view, every language

act has consequences for conversing agents, leading to immediate actions and to

commitments for future action.

Following that trend, this thesis explores a model for conversations whose main principle is

the negotiation of shared social commitments, that is, directed obligations in which one

agent has a responsibility relative to another agent for the performance of an action.

For agents to mutually know that a social commitment is being shared among them, it is

necessary that they know that the other agents with whom this commitment is shared also

know that this commitment is shared. To be faithful to the requirement that agents are

autonomous entities, these agents cannot have any indication that a commitment is shared

except for what they can observe through their communications; thus, messages must exist

to establish shared social commitments. However, the uttering of these messages cannot

result in the automatic imposition of social commitments; instead, speakers and hearers

must engage in a negotiation towards the uptake of shared social commitments. This model

specifies a small protocol, which is called the Protocol for Proposals, as a mechanism to

negotiate shared social commitments.

Although the negotiation of shared social commitments is the central piece upon which the

model for conversations is founded, it is nevertheless a vehicle to an end: that of giving rise

to social obligations to action. That is, by mutually agreeing to uptake social commitments

agents not only adopt the shared state of these commitments, but also uptake obligations to

perform the negotiated actions (if and only if these agents are specified as the performers of

4

the actions).2 For example, that Alice and Bob have negotiated a shared social commitment

specifying an action in which Bob is to tell Alice the time of the day, creates the obligations

in Bob that he has to find out the time and that he has to tell the time to Alice.

Since the role of actions is important in this model, the next section gives a brief overview

of this topic.

1.3.1 Actions

The model for conversations defines a basic structure of actions from which other actions

are derived.

As shown in the UML class diagram in Figure 1, this model defines two basic types of

actions: individual actions (which are atomic actions performed by one agent) and

composite actions (actions encompassing various other actions). Joint actions are defined

as composite actions in which there is more than one performer. The individual actions

ToOutput and ToInput are defined as actions that generate an output and receive an input,

respectively. These actions are part of the joint action ToCommunicate, which specifies

that the output of the outputting action is the same as the input of the inputting action. The

action ToCommunicate is specialized as a ToSpeak action in which the outputting and

inputting actions are specialized to the actions ToVoice and ToHear, respectively, and

where the communicated data is a set of illocutionary points. Lastly, the action ToProcess

is defined as an individual action that gets an input and produces an output.

2 This thesis refers to social obligations (or simply as obligations) as the obligations that are established by
agents through their communications (in this case through the negotiation of commitments). These
obligations are different than the ones that agents actually pursue, i.e., their intentions. Although it is
expected that social obligations influence the intentions of an agent, this relationship is not specified in the
model here presented.

5

1.3.2 Social Commitments and Obligations

Social commitments are directed obligations in which one agent is responsible relative to

another agent for the performance of an action. In this model, the adoption of shared

commitments generates obligations to act upon the actions in the negotiated commitment.

In general, agents that have adopted a social commitment to perform an action have an

obligation in which there is a social currency at stake, such as money or their own

reputation. From this perspective, agents should be selective of the social commitments

they adopt if they are to fulfill the obligations entailed by those commitments lest they risk

the punishments associated with failure.

Figure 1. UML class diagram for basic actions in the model for conversations.

6

1.3.3 Speech Acts and Illocutionary Points

Agent communication languages (ACL) define the meaning of messages using notions

from the speech-as-action tradition (Austin, 1962; Searle, 1975). In this tradition,

utterances are actions (thus the term speech acts) that are performed by virtue of being

uttered.

Speech acts are composed of an illocutionary point (signalling the intention of the act), an

illocutionary force (signalling its imperative) and a propositional content (conveying the

information communicated).

In the model for conversations, messages are defined as speech acts conveying a collection

of illocutionary points (the illocutionary force is considered a secondary source of meaning

and is not modelled). Four illocutionary points are defined to support the negotiation of

shared social commitments:

• Propose: to put forth the adoption or discard of a shared social commitment,

• Accept: to accept adopting or discharging a shared social commitment,

• Reject: to reject adopting or discharging a social commitment, and

• Counter: to reject a previous proposal while putting forth another proposal to be

considered instead.

A fifth illocutionary point (Inform) is used to communicate data (i.e., propositional

content).

1.3.4 Conversation Policies

It is one thing to define illocutionary points and quite another to describe how they are used

and what they can accomplish when used in conversations. The model for conversations

defines the Protocol for Proposals (which is implemented using conversation policies) to

guide the evolution of conversations and their potential accomplishments.

7

Negotiating Shared Social Commitments

The first policy indicates that the uttering of a proposal (i.e., a speech act containing a

Propose illocutionary point) commits the hearer to reply to the proposal; that is, the hearer

is committed to utter a speech act containing an Accept, Reject or Counter illocutionary

point with identical characteristics as that of the uttered Propose.

The second policy indicates that the uttering of a reply (i.e., a speech act containing an

Accept, Reject or Counter illocutionary point) discards an obligation in which the speaker is

committed to utter a reply.

The third policy defines that the uttering of a Propose followed by an Accept illocutionary

point results in the adoption or discard (whatever operation it is negotiated) of a shared

social commitment and corresponding obligations.

Proposing to Discharge Shared Social Commitments

Once a social commitment has been accepted as shared, it is usually the case that it will be

discharged after the performance of its actions (thus freeing the interacting agents of any

obligations acquired by adopting the commitment).3

Policy 4 specifies that the adoption to commit to certain actions also commits agents to

propose its discharge. To enable this behaviour, involved actions define a discharger agent

(that proposes the discharge) and a discharged agent (that is proposed the discharge).

1.3.5 Example: Giving the Time

Let us imagine now a simple conversation in which Alice asks Bob for the time (e.g., “Can

you tell me the time?”4). Assuming that Bob is willing to provide this information (e.g., he

3 Most conversations entail obligations that are transient in nature, i.e., they bind participants only during the
time of interaction. That would be the case, for example, of a dialogue to pass the salt at dinnertime (“Could
you pass the salt?”—“Yes…Here it is”—“Thanks”), in which an obligation is created—that of passing the
salt—and is discharged once the salt is handed out. In contrast, there are other actions that entail obligations
that remain after the interaction has ended (e.g., getting married, in which certain obligations, such as to love
and respect one another, remain after the wedding ceremony).

8

utters “Sure…”), one can expect that he will check his watch and tell Alice the time he

observed (e.g., “It is 10:05 a.m.”), and finally that Alice will kindly acknowledge the effort

(e.g., saying “Thanks!”).

As simple as it seems, it is not straightforward to explain what makes Alice and Bob

believe they are engaged in a structured conversation. The contention in this thesis is that

this conversation (and perhaps all conversations for action) can be explained as an orderly

sequence of speech acts negotiating the adoption and discard of shared social commitments.

To support this claim, this section illustrates how the model for conversations supports

Alice and Bob’s conversation by showing the exchange of speech acts and the

accumulation and discard of shared social commitments and obligations that these speech

acts bring about.

As shown in the UML class diagram in Figure 2, the action of “giving the time” is defined

as a class ToGiveTheTime that inherits from ToGenerate and ToProposeToDischarge. In

this case, Bob is the generator and discharger agent in the action (i.e., he is the performer

of an action that outputs the time of the day, the speaker in a communication where the

time is informed, and the speaker of a proposal to discharge the commitment of giving the

time), and Alice is the receiver and discharged agent (i.e., the agent who is informed the

time, and the agent who is proposed the discharge of the commitment of giving the time).

4 According to linguistic pragmatics, the simplest way to communicate meaning is to make use of utterances
that mean literally what they say (e.g., “You tell me the time.”) However, it has been argued that this type of
expression is not often used in human discourse because it is more socially acceptable to seek agreement than
to impose actions onto others (Tannen, 1986). As a result, humans regularly make use of indirect speech acts
(Searle, 1975), that is, utterances whose meaning is to be inferred. That is the case with the utterance “Do
you know what time it is?”, where the intention is not to find out whether or not the hearer knows about the
time (a yes/no question) but to request the hearer to do something else, like informing the time to the speaker,
or remind the hearer that she is running late for an appointment. In this thesis, indirect speech is regarded as
the outcome of cognitive ability to recognize meaning by virtue of the context shared between speaker and
hearer, and it is not part of the model for conversations. Nevertheless, this type of speech is used in some
examples to illustrate conversations in terms of colloquial human discourse.

9

Figure 3 illustrates the conversation between Alice and Bob. This conversation begins with

Alice’s request that Bob give her the time.5 This request takes the form of a speech act

containing a Propose illocutionary point proposing to adopt as shared the social

commitment that Bob commits to Alice to inform her the time. By virtue of its illocution

(and according to Policy 1), this proposal creates the expectation that Bob will reply to

Alice, that is, it creates obligations in which Bob is to reply to Alice’s proposal to adopt the

commitment. This is shown in Bob’s obligations to participate in a Speaking joint activity

in which he is the speaker, and in Alice’s obligations in which she participates as the

hearer.

This utterance is followed by Bob’s acceptance of Alice’s proposal (“Sure…”), which leads

to the discard of the obligation to reply (Policy 2) and the uptake of the shared commitment

(along with the obligations it entails), in which Bob informs Alice the time (Policy 3). In

5 The representation of utterances, commitments and obligations in the figure was simplified for clarity.

Figure 2. UML class diagram for the joint action ToGiveTheTime.

10

addition, this acceptance makes Alice and Bob acquire the obligation that Bob is

responsible to propose the discard of the commitment to give the time (Policy 4).

When Bob later informs the time to Alice (“It is 10:05 a.m.”) he is not simply

communicating the time but instead he is proposing to discard the shared commitment (and

its corresponding obligations) that he informs the time by providing this information along

with the proposal. Given that this utterance is a proposal it follows that there is now the

expectation that Alice will reply to it (Policy 1).

Lastly, when Alice accepts to discard the commitment (by uttering “Thanks!”), she causes

the discharge of the obligation that she will reply to Bob’s proposal to discard the

commitment to inform the time (Policy 2), as well as the shared commitment and

obligations in which Bob is to inform her the time (Policy 3). This acceptance also results

in the discard of the obligation that Bob is to propose to discard the agreed social

commitment (Policy 4). This last utterance leaves no shared commitments or obligations.

As shown in this example, the model for conversations uses the negotiation of social

commitments as a semantics to structure agent conversations for action. The remainder of

the thesis will show in detail how this model is applied to structure conversations.

1.4 Research Objectives

The objectives for this research are the following:

1. To survey the state of the art on agent communication languages to determine their

adequacy to support agent conversations.

2. To define the requirements that a model for conversations should support.

3. To propose a model for conversations that supports these requirements.

4. To evaluate the model for conversations in a range of practical domains.

5. To propose further research based on the experiences obtained.

11

Figure 3. UML interaction diagram for Alice and Bob's conversation to get the time.

12

As will be shown in the remaining chapters of this thesis, these objectives support the aim

of defining a semantic model for the structured specification of agent conversations for

action.

1.5 Thesis Overview

This first chapter succinctly describes the motivations for defining a model for

conversations, mainly as the means to support software agent interoperability. This model

uses speech acts and conversation policies as the core notions to guide the negotiation of

shared social commitments. The dynamics of this model were shown through a brief

example about requesting the time of the day.

The remaining chapters of the thesis unfold as follows. Chapter 2 describes related work in

the area of agent communication languages; this chapter highlights the main drawbacks of

current ACL methodologies in their approach to conversations, and lists the desiderata for a

model for conversations. Chapter 3 describes in detail the presented model for

conversations, which claims to support structured conversations for action. Chapters 4 and

5 present thorough examples showing how this model supports conversations in different

domains of application. Chapter 6 presents an evaluation of this model, a brief description

of related and future work, and concludes with a review of the research objectives set in the

first chapter.

13

Chapter 2

Related Work

2.1 Overview

This chapter describes current approaches to agent communication languages. These

approaches conceptualize conversations in terms of speech acts and conversation protocols.

This chapter reviews these approaches, highlighting their weaknesses in supporting agent

interoperability, and finally describes desired requirements for a model for conversations

for open environments.

2.2 The Study of Natural Language

In linguistics, natural language is studied under three broad domains: syntax (which dictates

the rules for combining words into well-formed sentences), semantics (which specifies the

literal meaning of sentences regardless of context) and pragmatics (which specifies the

meaning that arises from specific contexts of use).

The defining element between semantics and pragmatics is their appeal to context, that is,

to the set of circumstances in which utterances occur. As explained by Clark in his

description on language use (Clark, 1996), context is the current common ground among

conversing agents, including the physical and social settings of interaction and the

knowledge that these agents share.

14

2.3 Speech Act Theory

A sub-field of linguistic pragmatics is that of speech act theory, proposed by Austin (1962).

In this theory, Austin argues that there are utterances that cannot be catalogued according to

their truth or falsity (which was the prevalent view at that time), but rather according to

their felicity, that is, their adequacy and appropriateness to the context in which they are

uttered.

Austin advocated that utterances are acts that people perform in speaking: specifically that

utterances are intended to get hearers to do things based on their understanding of what the

speaker meant. According to Austin’s terminology, an utterance by a speaker is a

perlocutionary act and the consequent action by the hearer is the perlocutionary effect.

Perlocutionary effects, however, are the result of the hearer’s interpretation of an utterance

and do not necessarily reflect the speaker’s intention. Therefore, Austin defined the act of

getting the hearer to recognize the speaker’s meaning as an illocutionary act and the

recognition itself is called the illocutionary effect.

Searle (1975) complemented Austin’s work by proposing a classification of speech acts.

Searle argued that speech acts have three identifying elements: an illocutionary point (i.e.,

the publicly intended perlocutionary effect), an illocutionary force (i.e., the manner and

degree), and a propositional content (i.e., the expression indicating subjective information).

Searle classified speech acts based on their illocutionary point as belonging to one of the

following five types: 6

• assertives: in which the speaker expresses a proposition (e.g., to inform, to notify),

• directives: in which the speaker attempts to get the hearer to do something (e.g., to

request, to command),

6 Clark (1996) acknowledges that this classification has worked for researchers as a point of reference for the
study of speech acts. Nevertheless, he argues that there are at least two problems with this categorization: a)
that it is not absolute, i.e., it does not account for all potential illocutionary acts, and b) that every
illocutionary act is assumed to belong to one and only one category.

15

• commissives: in which the speaker commits to a future course of action (e.g. to

promise, to offer),

• expressives: in which the speaker expresses a psychological condition about a state

of affairs (e.g. to praise, to apologize), and

• declarations: in which the speaker—given his invested authority—states a

proposition as a fact in the world (e.g. to marry (by a minister), to sentence (by a

judge)).

2.3.1 Speech Acts and ACL

Software agents are problem solver computer programs that communicate with one another

to elicit collaboration toward pursuing actions that they cannot accomplish individually. In

this view, agents are autonomous goal-oriented entities with intentional communications,

that is, they exchange messages that are designed to achieve certain ends, just as any other

action that they may pursue to achieve their goals.

Since speech act theory was proposed as a model to analyze intentional components of

individual natural language utterances, it was not unexpected that agent researchers would

adopt it as a model for their ACL message semantics.

2.4 Speech Act Semantics in ACL

Currently there are five dominating approaches in the landscape of semantics for ACL.

These are: Cohen and Levesque’s Joint Intention Theory, FIPA ACL, KQML, Singh’s

social semantics for ACL, and Colombetti’s Albatross. Based on their semantic principles,

these ACL can be classified as based on either mental or social attributes.

2.4.1 Mental Semantics

Prevailing ACL specify their speech act semantics in terms of mental attributes, such as

beliefs, intentions and goals. These include Cohen and Levesque’s Joint Intention Theory,

FIPA ACL and KQML. These are briefly described below.

16

Cohen And Levesque’s Joint Intention Theory

Cohen and Levesque’s Joint Intention Theory (JIT) (Cohen & Levesque, 1990a; Cohen &

Levesque, 1990b; Kumar, et al., 2000) is a theory of rational action in which

communicational acts are specified as attempts.

The communicational act ATTEMPT is defined as an action that an agent performs to

achieve a goal p (which is currently believed to be false) while at least trying to achieve an

intended effect q in case p cannot occur. That is, p represents a goal that may or may not be

achieved by the attempt, and q represents what it takes to make an honest effort.

ATTEMPT is the basic component from which other communicative acts, such as

INFORM, are derived. Therefore, INFORM is specified as an ATTEMPT where p is a goal

in which a hearer is to believe that the speaker and herself (the hearer) mutually believe in

p; and where the intended effect q is to create in the hearer the belief that both the speaker

and hearer mutually believe that the speaker believes in p.

FIPA ACL

The Foundation for Intelligent Physical Agents (FIPA, 1997) proposes an ACL (FIPA-

ACL) in which speech acts are defined based on the rational conditions preceding and

succeeding their utterance. For example, the communicative act inform is defined as an

illocution whose feasibility precondition is that the speaker both believes in a proposition p,

and does not believe that the hearer has any belief or uncertainty about this proposition, and

whose rational effect (the post-condition) is that the hearer comes to believe p.

KQML

Similar to FIPA-ACL, communicative acts in the Knowledge Query and Manipulation

Language (KQML) (Finin, et al., 1997; Labrou, 1997; Labrou & Finin, 1999) also specifies

the pre- and post-conditions of a speech act utterance. These pre- and post-conditions can

be illustrated by the communicative act tell, which is defined as an illocution whose

17

• pre-conditions are that the speaker believes in a proposition p, that he knows that

the hearer wants to either believe or not believe p, and that the hearer intends (i.e., is

committed) to know this proposition; and

• post-conditions are that the speaker knows that the hearer knows that the speaker

believes in p; and that the hearer knows that the speaker believes in p.

2.4.2 Social Semantics

An alternative approach to speech act semantics is to define the meaning of messages using

social commitments. Two approaches to social semantics are described below; these are

the social semantic models proposed by Singh and Colombetti.

Singh’s Social Semantics

Singh (1999) proposes a semantic model to formalize speech acts in terms of their

objective, subjective and practical validity claims (Habermas, 1984).

In this model, objective validity claims is the meaning that is given as the intrinsic value of

an illocution. For example, that agent x is informing agent y of a proposition p indicates a

commitment between x and y on the validity of p. Subjective validity claims signal the

meaning of an utterance in cases when the speaker is deemed sincere. For example, that x is

informing y of a proposition p, and x is considered to be truthful, indicates a commitment

between x and y in which x beliefs p to be true. Lastly, practical validity claims are

communicational meta-commitments that justify speakers (upon a context G) to utter a

communicative act. Thus, that x is informing y is justified by the commitment of x to G

that he has reasons to know the value of p.

Colombetti’s Albatross

Colombetti (2000) proposes an agent language (called Albatross) in which speech acts

eliciting actions bind agents to pre-commitments, that is, weaker states of commitment that

do not obligate to action. Once pre-commitments are established they can be confirmed as

18

commitments through the uttering of additional speech acts. This uptake of commitments

is achieved through the speech acts request (a directive) and accept (an assertive).

A request is a speech act that is uttered as an act e by agent x in which he communicates to

agent y the proposition φ that she does action α before time d has elapsed (where d is in the

future). By uttering this request, x is not imposing a commitment on y but rather is

negotiating this commitment through a pre-commitment. This pre-commitment does not

yet bind y to do action α since it has to be changed to a commitment in order to create an

obligation. An accept is a speech act that does exactly that, that is, it creates a commitment

based on the existence of a pre-commitment.

2.5 Conversational Sequencing in ACL

Agents can be analysed as entities that use some sort of utility function to optimize their

behaviour. In this view, agents select the best action to pursue next by taking into account

the variables that affect this function (e.g., current goals, available resources). This also

applies to conversations, and agents are expected to choose the utterances they believe

constitute an optimal participation at any given time.

The problem with conversations, as with any other joint action, is that participants need to

coordinate their intentions in order to advance them. To support agents’ autonomy, such

coordination cannot be achieved by having agents directly accessing each other’s internal

states. Instead they must infer other agents’ intentions from their public communicative

behaviour. There are two approaches that agents can apply to coordinate their intentions in

conversations. These are conversation protocols and conversation policies.

2.5.1 Conversation Protocols

Conversation protocols are static structures that deterministically specify which messages

can follow any given message in a conversation.

Protocols are usually represented with state-transition diagrams (e.g., Winograd & Flores,

1987; Bradshaw, et al., 1997) or Petri Nets (e.g., Ferber, 1999; Cost, et al., 1999).

19

Although they are simple to implement, protocols lack any compositional rules to define

how they can be extended or merged (Greaves, et al., 1999). That is, once a protocol is

specified, any modification to the types or sequencing of messages results in a completely

new protocol that needs to be provided to all interacting agents.

2.5.2 Conversation Policies

On the other hand, conversation policies are defined as declarative rules that constrain the

nature and exchange of speech acts between agents. These rules correspond to assumptions

limiting the scope of utterances that agents should consider when selecting their

participations in a conversation.

Greaves, et al., (1999) has proposed several requirements for conversation policies. These

are: a) they must be independent from specific implementation techniques; b) they must be

flexible enough to allow dynamic context-dependent composition; and finally, c) they must

support conversations between agents of different levels of sophistication.

2.5.3 Conversations in Current ACL

This section briefly describes the approaches taken by surveyed ACL with respect to the

ordering of utterances in a conversation.

Smith et al. (1998) proposed an extension to Cohen and Levesque’s JIT in which speech

acts compositionally specify the speech acts preceding and following their utterance. In

this view, speech act sequencing is pre-defined to those speech acts (and their subtypes) in

a specification. That is the case of the communicative act ACKNOWLEDGE, for example,

which is defined as an INFORM in which the speaker expresses that he believes that the

hearer believes a proposition p given that the hearer previously uttered an INFORM

informing his belief in p (in other words, the utterance of an INFORM informing p can be

followed by an ACKNOWLEDGE informing that the informed agent believes that the

informer agent believes in p).

Similarly, KQML supports a limited approach to conversational sequencing based on the

causal relation between the mental states in the pre- and post-conditions of speech acts.

20

Although this approach can be viable for simple conversations, it has been complemented

by protocols composed in a definite clause grammar. In contrast, FIPA ACL and Albatross

do not make any attempt to define rules of conversational sequencing, and rely on protocols

to govern conversations.

Lastly, Singh’s social semantics model is currently being enhanced with a framework for

conversations called commitment machines (Yolum & Singh, 2001). This framework

specifies conversations as sequences of states and transitions that affect the commitments

of interacting agents. The operational semantics of interactions is captured by reasoning

rules indicating the manipulation of commitments.

2.5.4 Requirements for a Model for Conversations

Prior to embracing new endeavours (such as developing a new model for conversations),

one needs to analyse existing techniques in order to avoid reinventing what already exists.

To that end, this section presents the requirements for a model for conversations and

evaluates whether or not these requirements are satisfied by existing ACL.

Speech Act Semantics

One of the premises of speech act theory is that utterances are events that change the mental

states of interacting agents based on their ability to recognize one another’s intentions

(Cohen, Morgan and Pollack, 1990; Perrault, 1990).7 This implies that hearers are bound to

infer speaker’s intent solely by the reasons they may think of as to why the speaker selected

a specific utterance at that particular occasion (and where the hearers also know that the

speaker selected this utterance knowing that hearers will engage in such a deliberation)

(Sadock, 1990). What it is important here is the notion that utterances do not readily

7 As asserted by Bratman (1990), the main reason for agents to communicate their intentions is to coordinate
their actions. Bratman eloquently argues that intentions are conduct controllers whose communication creates
social expectations of behaviour. Particularly, he contends that intentions are a stable mental notion (in
contrast to desires, which he sees as mere potential influencers of conduct) that agents could rely on to persist
until the time of action, a characteristic that makes them adequate for agents to rely on to coordinate their
actions.

21

embody speaker’s intent, but that utterances are formed in such a way as to allow hearers to

find reasons to derive such intent. That is, utterances are actions that have a meaning that is

independent of (but not unrelated to) the speaker’s mental states. The challenge faced by

speakers and hearers is to coordinate their expectations as to convey in an utterance (in the

case of speakers) and to recognize in an utterance (in the case of hearers) the same mental

states.

From this perspective, current ACL based on mental semantics (i.e., JIT, FIPA ACL,

KQML, and (to a certain extent) Singh’s model) attempt to bridge the communication of

intent by directly defining utterances in terms of the mental states of agents. Although

these definitions could result in the simplification of the inference process bore by hearers,

it makes it so by imposing that speakers use an utterance only when their mental states

match its definition, which demand that agents are always sincere. As has been contended

in the past by various researchers (e.g., Singh (1998), Wooldridge (1998), FIPA (1997)),

sincerity in communications is an unrealistic requirement for autonomous agents:

confirming that an utterance complies with its definition (or proving otherwise) requires

agents to inspect each other’s mental states, which could only be done if agents are

implemented in pre-established ways (thus restricting the autonomy on their design and

construction, i.e., their heterogeneity). Because of their use of mental states to define

utterances, ACL based on mental semantics are said to be not publicly verifiable (i.e., the

occurrence of an utterance cannot be confirmed to match its definition). In contrast, this

thesis contends that utterances do have a public meaning that is used by speakers to hint at

their intentions, and by hearers to infer the intentions of speakers.

This leads to the first requirement for a model for conversations:

To support agent conversations in open environments, a model for conversations must

specify its message semantics using publicly verifiable principles.

Rather than directly linking utterances to the mental states of interacting agents, this thesis

adopts the stance that inferring speakers’ intents is a gradual process involving contractual

22

social aspects (Winograd & Flores, 1987). In particular, that the notion of social

commitments can provide for a principled way to connect the external (public) world of

interactions with the internal (private) world of individual rational action. As such, the

notion of social commitments will be used in this thesis to define a model for

conversations.

Conversational Sequencing

The question of what it is that makes a conversation meaningful has puzzled researchers for

some time now. As defined by Craig and Tracy (1983), a coherent conversation is a

sequence of utterances exchanged by competent agents that seem to be connected in orderly

and meaningful ways. They argue that conversations could be analysed from the points of

view of form and strategy, where the former refers to the conversational rules and patterns

for structuring conversations (e.g., sequencing and turn-taking), and the latter refers to the

agents’ deliberate selection of utterances that help them accomplish their individual goals.

On the one hand, form and strategy are complementary, that is, rational strategies can use

structural rules as a resource for accomplishing an agent’s conversational goals. On the

other hand, their application is not symmetric: agents may have contrasting strategies (since

each agent individually selects the strategy that they believe will lead to their goals) but

they must have the same formation rules to structure their conversational exchanges.

Even though these two views are worth of investigation, this thesis is particularly interested

in the public aspects of conversational structuring (rather than the private aspects of rational

strategies). This public aspect of conversations is what has normally been addressed by

conversation protocols (patterns) and conversation policies (rules). This thesis explores the

same vein, but emphasises the use of conversational policies over protocols, since protocols

can be seen as static subsets of the universe of conversations allowed by policies (which

could potentially provide for more flexible conversations).

As such, the second requirement for a model for conversations is:

23

To support the form of conversations, a model for conversations must define policies

governing conversational composition.

One of the characteristics noted in most surveyed ACL is their dependency on conversation

protocols, which limit their support for flexible, context-dependent interoperability. It is

worth noting that at least one of these approaches (Singh’s commitment machines)

investigates the principles governing conversational composition. The main similarities

and differences between this approach and the model for conversations described in this

thesis are later considered in Chapter 6.

2.6 Summary

This chapter briefly analysed current ACL approaches and their theoretical foundations.

The ACL surveyed were Cohen and Levesque’s Joint Intention Theory, KQML, FIPA-

ACL, Singh’s social semantics and Colombetti’s Albatross.

The main motivation for investigating these ACL was to identify their adequacy to support

agent conversations in open environments. This led to two requirements: first, that

message semantics must be based on publicly verifiable principles (so that any utterance

could be verified to comply with the language definitions); and second, that the sequencing

of messages must be governed by flexible compositional policies (so that conversations

could be dynamically composed to account for the context-dependent circumstances on

which they occur). These requirements were shown not to be satisfactorily supported by

the surveyed ACL. The next chapter will describe a model for agent conversations that

does satisfy these requirements.

24

Chapter 3

Modelling Agent

Conversations for Action

3.1 Overview

This chapter describes the basics notions in the model for conversations for action, whose

fundamental principle is the negotiation of shared social commitments and the obligations

these commitments entail.

The first section in this chapter presents the specification of actions and events (which are

the occurrence of actions), speech acts (which are specified as actions) and utterances

(which are modelled as occurrences of speech acts). Subsequent sections define social

commitments, shared social commitments, and the operations that can be proposed to affect

the state of shared social commitments of agents, namely their addition or discard as

shared. This is followed by the definition of agents, which are modelled as entities with a

record of utterances, shared social commitments, and obligations resulting from the

adoption of these social commitments. The negotiation of shared social commitments is

supported by a simple protocol implemented using illocutionary points and conversation

policies (which together comprise the Protocol for Proposals). Also, this chapter presents

a definition of normative societies, that is, societies where norms define the expected

behaviour of agents when engaged in joint activities.

25

Figure 4. UML diagram of main classes in the model for conversations.

26

Figure 4 shows a simplified UML class diagram with most of these concepts. This diagram

can be used as a road map when reading subsequent sections.

Lastly, this model is formalized using the Object-Z formal language notation.8 Some of the

advantages of this language are that it allows type checking of specifications, formal proof

of certain properties of modelled systems, and a reasonably straightforward translation to

computer implementations.9

3.2 Actions

Multi-agent systems are systems composed of loosely coupled agents that coordinate their

actions to achieve their individual and collective objectives (Ferber, 1999). In these

systems, the purpose of interacting (or conversing, in the case of purely communicational

agents) is to bring about the execution of actions.

3.2.1 Individual and Composite Actions

Actions are defined as either individual or composite, where an individual action is an

atomic action performed by one agent, and a composite action is a collection of actions

performed by one or more agents.

This composition of actions is modelled following the guidelines of the Composite design

pattern (Gamma, et al., 1995). As a result, the following three classes are modelled: the

8 For readers not familiar with Z and Object-Z, Appendix A presents a brief tutorial on these specification
languages. Further reading on these languages can be found in (Spivey, 1992) and (Diller, 1990), and (Smith,
2000), respectively. The type consistency of specifications in this thesis was verified using the Wizard type
checker (SVRC, 2002).
9 The main advantage of a formal specification is that it helps to unambiguously describe a state of affairs.
Propositional, first-order and modal logics are examples of formal notations that can be used to this end.
Object-Z is a specification language whose formal notation is derived from first-order logic, set theory and
object-oriented principles. In the realms of Computer Science, it is not only desirable to have unequivocal
specifications but it is usually required to also have a computational implementation. Under these
circumstances Object-Z is a more appealing candidate than other formal notations to specify computational
systems due to its use of object-oriented principles, which facilitate the implementation of systems in
common object-oriented programming languages.

27

class Action (as the superclass component node), the class IndividualAction (as the leaf

node, a subclass of Action), and the class CompositeAction (as the composite node, another

subclass of Action).

The class Action contains the state variable performers (to reference a set of one or more

objects of type—or subtype of—Agent), and the empty operation Perform (which is

overridden by subclasses to specify what it means to do the action.

The class IndividualAction inherits from Action and defines the variable performer (to

reference an instance of type—or subtype of—Agent), which is specified as the only agent

in the set of performers (which effectively makes it the only performer of the action).

Lastly, the class CompositeAction is a class inheriting from Action that defines the variable

actions (to reference a set of one or more instances of type—or subtype of—Action), and

the operation Perform, which specifies that all actions in the actions set are performed

concurrently. This class also specifies that the set of performers of this action is equal to

the set of all performers of actions in the set actions.

28

Basic Individual Actions

There are three basic individual actions from which we derive more meaningful actions:

• ToInput: actions that receive an input,

• ToOutput: actions that generate an output, and

• ToProcess: actions that receive an input and generate an output.

As shown below, all inputs and outputs in these classes are sets of objects of type—or

subtype of—Data (which is an empty class that acts as the superclass for all data classes).

29

Joint Actions

Lastly, a joint action is a type of composite action in which there are two or more

performers.10 All joint actions in the model are derived from this class.

3.3 Communicational Actions

A communicational action is a joint action that involves communication between two

agents. In this model the basic communicational action (from which other

communicational actions are derived) is ToCommunicate. As shown below, this action

specifies the state variables sender and receiver (both of type Agent), a variable data (to

reference a non-empty set of objects of type Data), and two individual actions named send

and receive (of type ToOutput and ToInput, respectively). This class also specifies that the

sender is the performer of the send action; that the receiver is the performer of the receive

action; that the value of the variable data equals both the output of the send action and the

input of the receive action; and that the actions send and receive are the only actions in this

joint action. Lastly, the operation Perform indicates that the performance of the send action

precedes the performance of the receive action (which effectively makes the output of one

action the input for the next).

10 This definition is an oversimplification of joint actions as described by Clark (1996). Clark specifies that
there exists two types of individual actions: autonomous actions (actions performed by one agent in isolation)
and participatory actions (actions performed by one agent in coordination with the performances of other
agents in a joint action). As such, joint actions have participatory actions as their base actions. In the case of
this model, however, individual actions are treated as atomic and no differentiation is made between the two.

30

Based on this definition, the action Communicating is defined as the union of the classes

ToCommunicate and CompositeActing.

3.3.1 Speech Acts

According to the speech-as-action tradition, speech acts are composed of an illocutionary

point (conveying the intent of a speech act), an illocutionary force (expressing the strength)

and a propositional content (carrying the information or data).

In this model, the illocutionary point is the main carrier of meaning (rather than the

illocutionary force, which is not modelled) 11. As such, speaking is a joint action in which a

speaker communicates illocutionary points to an addressee (where an illocutionary point is

a subtype of Data). As shown below, the class of ToSpeak is a subclass of ToCommunicate

that defines the state variables speaker and addressee (to indicate the sender and receiver

agents), points (to indicate a non-empty set of illocutionary points that is communicated),

11 To illustrate the difference between the illocutionary point and illocutionary force in a speech act, imagine
the utterances “Could you please do your homework now?” and “You must do your home work right now!”
These utterances have the same illocutionary point (that of the addressee doing his/her homework now) but
different illocutionary force (the former being a polite request and the latter a forceful order). Nevertheless,
that the illocutionary force is not currently part of the model for conversations does not mean that its use may
not be desirable or advantageous (e.g., when requests are to be communicated with a sense of urgency).
Although the model could well accommodate such extensions, their realization is left as an exercise for future
research.

31

and the variables voice and hear (to indicate the actions for sending and receiving the

communicated illocutionary points, respectively). The types ToVoice and ToHear (from

which the variables voice and hear are instantiated) are defined as subclasses of ToSend and

ToInput, respectively.

Lastly, we define an illocutionary point that conveys information (i.e., propositional

content) between a speaker and addressee. As shown below, the Inform illocutionary point

defines a variable informing that references a set of instances of type—or subtype of—

Data. In section 3.8:Illocutionary Points we define other illocutionary points that are used

for the negotiation of shared social commitments.

Based on this definition, the action Speaking is defined as the union of the classes ToSpeak

and CompositeActing.

3.3.2 Other Basic Joint Actions

We define two basic joint action classes from which other application-dependent actions

are derived. These joint actions are ToGenerate and ToProduce. As shown below, the

32

class ToGenerate specifies that a generator agent first performs a ToOutput action that

produces some output data (out). Then it performs a ToSpeak action to inform a receiver

agent of the output data.

The class ToProduce is a subclass of ToGenerate in which the output action is an instance

of ToProcess, that is, an individual action that generates an output given an input.12 Based

on the behaviour inherited from ToGenerate, the output of the action is communicated to

the receiver through an Inform illocutionary point.

12 This class also defines the variable producer to reference the inherited generator agent. The only reason
for this redundancy is to facilitate readability, that is, a producer performs a producing action (c.f.,
generator).

33

3.3.3 Events and Utterances

Actions in this model are abstract concepts that have not occurred in the environment.

When they do happen they are considered events. Therefore, an event is the occurrence of

an action at a certain moment in time. As shown below, Event is a class specifying the

state variables time (to indicate the time of occurrence of the event) and action (to indicate

the action that occurred).13

Just as an event is defined as the record of the occurrence of any type of action, an

utterance is an event specifically involving the illocution of a speech act. Therefore,

Utterance is a class inheriting from Event whose variable action is restricted to an instance

of type ToSpeak.

13 In our model, the type Time is simply defined as a natural number (i.e., Time = N).

34

3.3.4 Scheduled Actions

When actions are negotiated they ought to refer to a time interval indicating when their

performance is expected to occur. We define the class Interval to indicate a time period.

This class defines the state variables from and until to denote the lower and upper bound of

the interval.

Using this definition, the class Acting is specified as a subclass of Action that defines a

variable time of type Interval. Interval denotes the time period within which the action is to

be performed.14 This class specifies an empty operation ProcessNorm that is overridden by

subclasses and which is used at the time that the action is evaluated by norms in a society

(as explained in section 3.9: Conversation Policies).

The class IndividualActing is a subclass of IndividualAction and Acting that overrides the

operation ProcessNorm to invoke the operation ProcessAction of a given norm, which is an

instance of type ActionNorm (this class is also explained is section 3.9: Conversation

Policies).

14 This thesis follows the convention of naming actions either in their infinitive form (e.g., ToSpeak) in the
case of abstract actions, or in their present participle form (e.g., Speaking) in the case of scheduled actions
(i.e., actions that have an expected interval time of occurrence).

35

Likewise, the class CompositeActing is a subclass of IndividualAction and Acting that

overrides the operation ProcessNorm not only to invoke the operation ProcessAction but

also to invoke the operation ProcessNorm for each enclosed action. Also, this class

constraints all enclosed actions to be of type—or subtype of—Acting, and that the time

period in which these actions are expected to occur is within the time of occurrence

specified for the composite action.

3.4 Social Commitments

Social commitments are directed obligations in which one agent (called the debtor of the

commitment) has a responsibility relative to another agent (the creditor of the commitment)

for the performance of an action (Singh, et al., 1999).15 Accordingly, the class

SocialCommitment specifies the state variables debtor, creditor and action. 16

15 This type of commitment is also known as relational commitment (Ferber, 1999).
16 Strictly speaking, the agent responsible for the action does not need to be the one performing this action. It
can be inferred that agents that become responsible for an action that is performed by another agent should

36

3.4.1 Shared Social Commitments

Once a social commitment has been proposed and agreed upon by negotiating agents it

acquires the status of being shared. The class SharedSocialCommitment represents this

type of social commitment. This class inherits from SocialCommitment and defines the

variable among to indicate the set of agents among which this commitment is shared.17

3.4.2 Operations

The proposal and later acceptance of a social commitment can have two possible outcomes:

either the commitment is adopted as shared, or the commitment is discarded as not shared

any longer. Therefore, two operations are defined which agents can use when putting forth

commitments for negotiation: adding and deleting. First, we define the class Operation as

the superclass for these two operations. This class defines a single state variable

commitment to reference an instance of type SocialCommitment.

have a degree of authority over this agent so that the action is accomplished. Nevertheless, this dimension of
social commitments involving social organizations is not addressed in this thesis.
17 Although strictly speaking a social commitment could be shared by any number of agents (as long as it is
more than one) our model currently deals only with the commitments shared between a speaker and an
addressee.

37

The classes Add and Delete are then defined as inheriting from the class Operation (the

usage of these operations is shown later in section 3.7: Negotiating Shared Social

Commitments).

3.5 Obligations

Obligations are engagements that bind an agent to a course of action.18 In this model,

obligations are created (and discarded) by the adoption (and discharge) of shared social

commitments. For example, that Bob has adopted a commitment in which he is to tell

Alice the time creates the obligations in Bob that he has to find out the time and that he has

to tell the time to Alice. Obligations are defined as actions that are expected to occur (i.e.,

as any action of type Acting).

3.6 Agents

Agents are conceptualized as entities that keep a collection of shared social commitments

and obligations, and a history of the utterances in which they have participated.

As shown in Figure 5, the class Agent defines the variables commitments (which holds the

shared social commitments of the agent), obligations (which holds the social obligations of

18 This definition of obligation is akin to the notion of simple action-commitment statements specified by D.N.
Walton and E.C.W. Krabbe (1995).

38

the agent),19 inbox and history (which are the sequence of utterances that the agent has just

received but has not processed yet, and the sequence of utterances that have already been

processed, respectively), and the variable current (which specifies the utterance that is

currently being processed).20

The remaining variables com_add, com_delete, obl_add and obl_delete are auxiliary

variables that function as temporary containers to hold the commitments and obligations

that are accumulated by the various norms when processing the utterance in current. As

will be seen shortly, norms do not modify the state of commitments and obligations of an

agent while each of the norms are being evaluated but rather all modifications are pooled in

the above auxiliary variables for their later application once the utterance has been

processed by all norms. The benefit of this technique is that it maintains the consistency of

an agent state regardless of the order in which norms process an utterance, and the order in

which the illocutionary points within the utterance are processed by a norm.

19 There is a compelling reason to define the collections of shared commitments and obligation as bags (which
allow duplicate elements) rather than sets (which do not allow duplicates). In our model, that an agent holds
identical obligations only means that she has recorded those entries given independent interactions, not
necessarily that the agent will perform the involved actions as many times as recorded. That is, the possible
optimization of performances (i.e., whether one performance satisfies all obligations or if independent
performances are required) is bound by the nature of the involved actions. For example, that Alice has
committed to Bob to brush her teeth after dinner and that she has also committed to Charles to brush her teeth
after dinner would generate two identical entries in Alice’s record of obligations. No other details
withstanding, Alice should be able to perform the action once to satisfy both Bob and Charles. On the other
hand, there are actions that would not allow such optimizations. That would be the case of Alice and Bob
adopting a shared commitment in which Bob bakes a cake for Alice tomorrow. If later that day Alice and
Bob adopt another commitment in which Bob bakes a cake (one with identical characteristics as that of the
previously requested cake) for Alice by the same time tomorrow, then Alice and Bob will hold a pair of
identical commitments and obligations that should lead Bob to prepare two identical cakes for Alice.
20 The meaning of “processing an utterance” will become clearer in later sections on norms and societies. In
brief, when an agent receives an utterance this utterance is stored in the inbox sequence until its turn come to
be processed by the norms that govern the behaviour of the agent (at which point the utterance becomes
current, that is, the utterance currently being processed). Once this utterance has been processed, it becomes
part of the history of utterances of the agent (and thus it is appended to the history sequence). It is worth
noting that the model for conversations allows one agent to hold simultaneous conversations. In such cases,
the utterances from these conversations accumulate in the sequence inbox in the order they arrive. In cases
where some conversations may have higher priority than others, it is possible (and sometimes desirable) to
extend the functionality of the agent specification to allow selecting the next utterance to process according to
their perceived importance (rather than FIFO, as it is currently specified). Although the model for
conversations has room for such extensions, they are not part of the specification presented in this thesis.

39

In addition, several restrictions are set on the following variables:

• commitments only holds shared social commitments in which the agent is one of the

agents among which this commitment is shared,

• obligations only holds obligations in which the agent is one of the performers of the

action,

Figure 5. Definition of the class Agent (part 1 of 3).

40

• inbox (whose utterances are ordered by time of occurrence), current and history

only hold utterances in which the agent is either the speaker or the addressee.21

The interface of this class is defined by the following operations.

Figure 5 shows the operation schemas INIT, which initializes the variables commitments,

obligations, inbox and history to empty; and AddUtterance, which appends an utterance to

the inbox sequence.

21 This restriction reflects the fact that the Agent class is designed to model the behavioural representation that
an observer agent holds of other agents in the environment. In practice this means that only when an agent
(Alice) has perceived that an utterance has occurred between two agents (Bob and Charles), she is justified in
updating the representation she maintains of these two agents. Now imagine that there was another agent
(Dave) in the proximity, who may have also perceived the utterance between Bob and Charles. Would Alice
be justified in updating her representation of Dave to reflect that he has witnessed the communication? From
a behavioural perspective, the answer is no. Basically, Alice can only know that Dave has also witnessed the
utterance if Dave makes his awareness public (e.g. by uttering that he knows about it), in which case Alice
would be justified in updating her and Dave’s representations because there was an utterance involved.
Otherwise Alice would need to reason whether or not there are reasons that justify concluding that Dave
knows about the utterance—which clearly is a rational process that lies outside of the scope of the model.

Figure 6. Definition of the class Agent (part 2 of 3).

41

Figure 6 shows the operations SetCurrent, which initializes as empty all auxiliary variables,

and assigns the next utterance out of inbox as the next current; ProcessCurrent, which

processes the utterance in current through all supplied norms; AdvanceCurrent, which adds

current to the history of utterances, and updates the commitments and obligations of the

agent with those commitments and obligations from the auxiliary variables; and Process,

which sequentially invokes SetCurrent, ProcessCurrent and AdvanceCurrent.

Figure 7. Definition of the class Agent (part 3 of 3).

42

Figure 7 shows the operation schemas AddCommitments and DeleteCommitments, which

add shared social commitments to the com_add and com_delete variables, respectively; and

AddObligations and DeleteObligations, which add obligations to the variables obl_add and

obl_delete. Lastly, this class defines the operation SendUtterance, which specifies that the

agent utters a given speech act to an addressee if and only if the agent is set as the speaker

of the speech act.

3.7 Negotiating Shared Social Commitments

One way to support the autonomy of agents is to allow them to decide whether or not other

agents can commit them to execute actions. In the case of this model, this means that

shared social commitments are not imposed but rather are negotiated between interacting

agents. To that end, we define a negotiation protocol that we call the Protocol for

Proposals (PFP), which provides a flexible and unambiguous pattern of conversational

turn-taking supporting the mutual adoption and discharge of social commitments to action.

Briefly explained, an instance of the PFP starts with a proposal from a speaker to a hearer

to adopt or discard a shared social commitment. Either the hearer replies with an

acceptance, rejection or counterproposal, or the speaker issues a withdrawal (i.e., a

rejection to one’s own proposal) or a counterproposal.22 All replies except a

counterproposal terminate an instance of the protocol. A counterproposal is deemed a

proposal in the sense that it can be followed by the same messages that can reply to a

proposal (but with speaker-hearer roles inverted if the previously proposed agent is the

speaker of the counterproposal).23 Lastly, when an acceptance is issued, both speaker and

22 It is also possible that the hearer goes silent. In such cases, the elapsing of the expected reply time indicates
to the speaker (or any observer) that the hearer either intentionally forfeited his obligation to reply or was
unable to communicate as expected. In such matters, we are assuming that communication between agents is
reliable, that is, the transmission of utterances is always achieved (c.f. the coordinated attack problem (Fagin,
et al., 1995)).
23 In theory, a counterproposal can follow another counterproposal ad infinitum; in practice, however,
successive counterproposals are limited by the reasoning, competence or endurance of interacting agents.

43

hearer simultaneously apply the proposed (and now accepted) operation on commitments to

their record of shared social commitments and obligations.

Figure 8 shows the AUML (Odell, et al., 2001) interaction diagram for the PFP. As shown

in the figure, the protocol starts with a proposal from agent a to agent b. This message can

be followed (before the expiration of a deadline) by the interaction patterns α or β. The

interaction pattern α indicates that either agent b sends an accepting message to agent a, or

that the interaction follows pattern β (but with agents a and b’s participatory roles inverted,

that is, the identity of the agent that in pattern α was agent a in pattern β will be agent b,

and likewise for agent b). The interaction pattern β indicates that agent a sends a rejection

Figure 8. AUML interaction template for the Protocol for Proposals.

44

or counterproposal message to agent b, in which case the interaction follows (before the

expiration of a deadline) by either pattern α or pattern β.

As described next, the model for conversations implements the PFP using illocutionary

points and conversation policies.

3.8 Illocutionary Points

This section defines the illocutionary points that are used to implement the PFP, namely

Propose, Accept, Reject and Counter (for counter-proposals). These illocutionary points are

defined as inheriting from the class IllocutionaryPoint).

3.8.1 Propose

The class Propose defines the state variables proposing (which indicates the operation on a

social commitment being proposed) and reply (which indicates the time interval when a

reply is expected).

3.8.2 Accept

The class Accept defines the state variable accepting (which indicates the operation on a

social commitment being accepted).

45

3.8.3 Reject

The class Reject defines the state variable rejecting (which indicates the operation on a

social commitment being rejected).

3.8.4 Counter

The class Counter is a class inheriting from Reject and Propose, where the former indicates

a commitment previously proposed and now being rejected, and the latter indicates a newly

proposed commitment (and corresponding expected time of reply).

To summarize, this section presented the illocutionary points that compose the speech acts

that agents can use to negotiate shared social commitments. It is worth mentioning that up

to this point only the structures that are communicated have been defined, and nothing has

been said about how these structures are actually used or what they can accomplish when

used in conversations. That is the topic of the next section on conversation policies.

3.9 Conversation Policies

The model defines conversation policies as norms that agents are expected to follow during

their conversations. As shown below, the class Norm (which is the superclass of all norms

in this model) defines a sole abstract operation ProcessUtterance. This operation, which is

invoked when evaluating the current utterance of an agent, is overridden by subclasses

defining concrete normative behaviour.

46

The class ActionNorm is a subclass of Norm that defines an abstract operation

ProcessAction. This operation is invoked by norms processing an utterance. It is

overridden by policies that generate obligations based on the actions of negotiated social

commitments.

3.9.1 Policy 1: Adopting Obligations to Reply

The first policy in the model specifies that agents proposed or counterproposed have to

reply.24

As shown in Figure 9, this policy is specified as the class PFPpolicy1 that inherits from

Norm and defines the operations ProcessUtterance (which overrides the operation inherited

from Norm) and ProcessProposal.

The operation ProcessUtterance specifies that for each proposal in a given utterance it

successively invokes the operations ProcessProposal and AddObligations, which result in

the generation and addition of obligations to a given agent instance.

The operation ProcessProposal is specified as receiving a proposal and returning a set of

obligations to reply. In the case that the agent given as input is the speaker of the proposal,

this operation returns obligations to a speaking action in which the agent is to hear the

reply. In the case that the agent is the addressee, the operation returns obligations to the

24 Although this is a strong assumption for autonomous agents, we see it as a rule of politeness: you answer if
you are proposed. In any event, agents are still free to disregard this (or any) policy when they see it fit (for
example if an insidious or defective agent sends inappropriate or hostile messages).

47

same speaking action but where the agent is to voice the reply. In addition, the reply’s

illocutionary points are specified by the axiom isReplyTo (which is defined below).

The axiom isReplyTo is a function that defines the set of illocutionary points that qualify as

a reply to a given proposal. As shown below, this operation specifies that a proposal is

replied to by a set of illocutionary points where there is either one illocutionary point

accepting (and not one rejecting), or one illocutionary point rejecting (and not one

accepting) the operation specified in the proposal.

Figure 9. Policy 1: A proposal commits addressee agents to reply.

48

3.9.2 Policy 2: Discarding Obligations to Reply

Once an agent has adopted obligations to reply, she can expect these obligations to be

discarded if any of the following two conditions occur:

1. The agent that was proposed to (or counterproposed to) utters a speech act

containing an Accept illocutionary point with the same operation on commitment as

that of the previously uttered Propose (or Counter).

2. The proposing or proposed to (or the counterproposing or counterproposed to) agent

utters a speech act containing a Reject illocutionary point with the same operation

on commitment as that of the previously uttered Propose (or Counter).

To support these conditions we define the class PFPpolicy2 (shown in Figure 10 and

Figure 11) which inherits from Norm and declares the operations ProcessAcceptance,

ProcessRejection and ProcessUtterance (which overrides the abstract operation inherited

from Norm).

The operation ProcessUtterance is specified as invoking the operations ProcessAcceptance

and ProcessRejection for each acceptance and rejection (respectively) in a given utterance,

and then invoking the operation DeleteObligations, which results in the generation and

deletion of obligations from a given agent instance.

49

The operation ProcessAcceptance is specified as receiving an acceptance and checking

whether or not this acceptance has matching proposals in the history of past utterances of

the agent. If such proposals exist then the history of utterances is analysed once more to

find out whether or not these proposals have been replied to. If at least one of these

proposals has not been replied to, then the acceptance is a legitimate reply, and thus the

corresponding obligations are selected for discharge. The process of finding matching

proposals to a given acceptance is specified by the axiom getProposeForAccept, which will

be defined shortly.

Figure 10. Policy 2: A reply releases agents of the obligation to reply (part 1 of 2).

50

Similar to the operation ProcessAcceptance, the operation ProcessRejection specifies that

for each given valid rejection that matches one or more past, non-replied to proposals there

exist obligations to reply that will be later discarded from the state of the agent. As before,

this operation takes a rejection and checks whether or not there are matching proposals in

Figure 11. Policy 2: A reply releases agents of the obligation to reply (part 2 of 2).

51

the history of past utterances of the agent.25 If such proposals exist then the history of

utterances is analysed once more to detect whether or not each of these proposals has been

replied to. If at least one proposal has not been replied to, then the rejection is a legitimate

reply to the proposal, and thus the corresponding obligations to reply are selected for

discharge. The process of finding matching proposals to a given rejection is specified by

the axiom getProposeForReject, which is defined next.

Querying the History of Utterances

The PFP specifies that conversations negotiating shared social commitments are patterns of

proposals followed by an acceptance, a rejection or a counterproposal. To keep track of

these patterns, agents maintain a history of the utterances in which they have participated.

When an agent receives an acceptance or a rejection, the history of utterances is analysed to

determine whether or not there is a matching past proposal (i.e., a not-yet-replied proposal

with an identical operation on commitment as that of the acceptance or rejection) to derive

that this acceptance or rejection is part of an ongoing conversation.

These queries are supported by the axioms getProposeForAccept and

getProposeForReject. The axiom getProposeForAccept (shown in Figure 12) specifies that

if there exists a past proposal from addressee to speaker that

• is still answerable at the time that the acceptance occurred;

• proposes the same operation on commitment as that of the acceptance; and

• for which a later acceptance or rejection replying to this proposal does not exist;

then this proposal is a member of the set returned by the function.

The axiom getProposeForReject (shown in Figure 13) is specified similarly.

25 In the case of acceptances, a matching past proposal is one that was uttered by the addressee to the speaker
of the acceptance. However, in the case of a rejection the scenario is slightly more complex, since the
rejection to a proposal can come from either the speaker or addressee of the proposal.

52

Figure 12. Axiom getProposeForAccept: To retrieve a past proposal given an acceptance.

53

Figure 13. Axiom getProposeForReject: To retrieve a past proposal given a rejection.

54

3.9.3 Policy 3: Agreeing to Uptake Social Commitments

The third policy specifies the consequences of participating in PFP conversations: that of

adopting and discarding shared social commitments and the obligations that these

commitments entail. As shown in Figure 14, this policy is defined as a class inheriting

from ActionNorm that defines the operations ProcessAction (which overrides the empty

operation inherited from ActionNorm), ProcessAcceptance and ProcessUtterance (which

overrides the abstract operation inherited from Norm).

The operation ProcessUtterance selects all acceptances in a given utterance and checks

whether or not each of these is a valid reply to a past proposal (as indicated by the

previously defined axiom getProposeForAccept). For each acceptance that satisfies this

criterion, this operation invokes the operation ProcessAcceptance, which is followed by

either the operation AddCommitments or DeleteCommitments (depending on whether or not

the acceptance is adopting or discarding a commitment, respectively). These operations are

performed concurrently with the operation ProcessNorm, followed by either

AddObligations or DeleteObligations (according to the operation in the acceptance).

Lastly, the operation ProcessAcceptance defines that for a given acceptance there exists a

shared social commitment that will be later added to (or discarded from) the state of the

agent. In the same manner, the operation ProcessAction defines that for any given action in

which the agent is one of the performers there is the obligation that the agent performs the

action (an obligation that will be later added or discarded from the state of the agent).

3.9.4 Policy 4: Adopting Obligations to Propose

There are two additional policies that define responsibility about the adoption and

discharge of social commitments.

The first policy states that once a commitment is adopted there is an agent that will propose

its discharge. Typical scenarios where this policy is applied are those in which there is a

request for results. For example, if Alice has requested the time to Bob, and Bob has

accepted the request, then Bob is responsible for proposing the discharge of the action.

55

Figure 14. Policy 3: Acceptances lead to the uptake of commitments and obligations.

56

The second policy is one that is less frequently used but is no less important. This policy

states that once a commitment to action is adopted there is an agent that will propose its

adoption (usually to a third agent). One example of the use of this policy is that of an agent

(an authoritative figure) requesting another agent (the future proposer) to propose to a third

agent the negotiation of a shared social commitment.26

Proposing to Discharge

The class ToProposeToDischarge is the superclass of all actions that once accepted are to

be proposed for discharge. This class inherits from the action ToSpeak and defines a

discharger agent and a discharged agent (which are the speaker and addressee,

respectively), and specifies that this speech act communicates an illocutionary point

proposing the discharge of the action.

The fourth policy in the model is specified by the class ProposingToDischargePolicy,

which is shown in Figure 15. As shown in the figure, this class inherits from ActionNorm

26 The example used to evaluate this policy (which is not recorded in this thesis) was that of a Parent asking a
Groom to commit to an action in which he proposes his Bride for marriage. The conversation is initiated by
the Dad requesting the Groom to adopt the action ProposingToMarry in which the Groom is the agent that
proposes to the Bride to adopt the action (which is specified as an action in which the Bride replies with a
yes/no response). After accepting the commitment from the Dad, the conversation continues with the Groom
proposing to the Bride, who in some cases accepts and in others rejects the proposal.

57

and defines the operations ProcessAction (which overrides the operation inherited from

ActionNorm) and ProcessUtterance (which overrides the operation inherited from Norm).

In brief, the operation ProcessUtterance specifies that for each acceptance found in the

utterance, such that there is a past propose matching the acceptance, the action operation

ProcessAction is performed followed by one of the agent operations AddObligations or

DeleteObligations (depending on whether or not the acceptance is accepting to add or to

delete a social commitment). Lastly, the operation ProcessAction specifies that given a

ProposingToDischarge27 action there exists an obligation in which the discharger agent is

to propose to the discharged agent the discharge of a social commitment comprising the

action.

Proposing to Adopt

The class ToProposeToAdopt is the class from which all actions that are proposed for

adoption are derived. This class inherits from the action ToSpeak and defines an adopter

and adopted agents (which are the speaker an addressee, respectively), and states that this

speech act communicates an illocutionary point proposing the adoption of the action.

27 The class ProposingToDischarge is a subclass of ToProposeToDischarge and CompositeActing.

58

Figure 15. Policy 4: Proposing to discharge an adopted social commitment to action.

59

Figure 16. Policy 5: Proposing to adopt a social commitment to action (part 1 of 2).

The fifth policy in the model is specified by class ProposingToAdoptPolicy, which is

shown in Figure 16 and Figure 17. As shown in these figures, this class inherits from

ActionNorm and specifies the variables speaker and addressee (indicating the speaker and

addressee of the utterance currently being processed), SAonly and SAnot (which are

auxiliary Boolean variables), and the operations ProcessAction (which overrides the

operation inherited from ActionNorm) and ProcessUtterance (which overrides the abstract

operation inherited from Norm).

60

The variable SAonly indicates that obligations can be generated only if the utterance being

processed was uttered between the adopter and the adopted. Likewise, the variable SAnot

indicates that obligations can be generated only if the utterance occurred between a pair of

agents that are not the adopter and adopted. These variables are used in the operations

ProcessUtterance and ProcessAction (which are described below).

Figure 17. Policy 5: Proposing to adopt a social commitment to action (part 2 of 2).

61

The operation ProcessUtterance specifies three conjunctive operations that are applied to

all acceptances found in the utterance being processed. In brief, the first operation adds

obligations to propose adopting the adopted action if this action is being adopted between

the adopter and an agent other than the adopted, or the adopted and an agent other than the

adopter. The second operation deletes obligations if acceptances occurred between the

adopter and the adopted—so that there is no need to have obligations to propose adopting

the action now being adopted. And the third operation deletes obligations to propose

adopting the action if the action is the one now being discharged.

Lastly, the operation ProcessAction specifies that given a ProposingToAdopt action there

exists an obligation in which the adopter agent is to propose to the adopted agent the

adoption of a social commitment involving the action.

3.10 Normative Agent Societies

A basic premise in this model is that collaborative agents voluntarily participate in

normative societies, that is, societies that specify the norms of behaviour that agents in the

society are expected to follow (Conte & Castelfranchi, 1995; Conte & Dellarocas, 2001).28

3.10.1 Joint Activities

Joint activities are sets of actions which are carried out by an ensemble of agents acting in

coordination with each other toward achieving certain dominant goals (Clark, 1996). The

superclass of all joint activities in the model is the class JointActivity, which defines a sole

variable actions (to refer to a set of joint actions) and an abstract operation Interaction (to

define the ideal sequences of communications in the activity).

28 In this view, agents not only have the autonomy to adopt norms but also the autonomy to abide or disregard
them according to their assumed costs of obedience and transgression. Although the model for conversations
does not explore this area, other more complex societies may define norms that restore equity and avoid
potential injury by making ill-behaved agents liable for their actions.

62

3.10.2 Societies

The class Society is the superclass of all societies in the model. This class defines variables

referencing a set of norms, a set of joint activities and a set of the agents associated to the

society (where all agents participating in any joint activity are part of the society). This

class also specifies the operation ExecuteNorms, which invokes the operation Process for

all agents with incoming utterances.

Lastly, the class PFPsociety (below) is defined to denote those societies that have as their

norms the conversation policies for the Protocol for Proposals and the policies for

proposing to adopt and to discharge.

63

3.11 Summary

This chapter introduced a model for conversations for action, whose fundamental elements

support the negotiation of shared social commitments. This chapter also described the

elements in the model, such as actions, social commitments, illocutionary points, norms

and conversation policies.

These elements can be classified in three groups: first are those elements that describe

communicational tokens, that is, elements that define conversational identity (e.g., speech

acts, illocutionary points, social commitments, operations); second are those elements that

show how these tokens are assembled into structured conversational sequences, which

define conversational use (e.g., policies that generate and discharge obligations to reply);

and lastly are those elements that indicate the expected outcome of specific utterance

sequences, that is, those elements that define conversational consequences (e.g., policies

that adopt and discard negotiated shared social commitments).

Subsequent chapters provide examples of how these conversational elements support the

cooperative behaviour of agents in practical domains.

64

Chapter 4

Example: The Contract Net

Protocol

4.1 Overview

This chapter illustrates how the model for conversations can be used to model the

interaction of agents in a joint activity. Specifically, this chapter focuses on the Contract

Net Protocol, which is a task allocation mechanism often used in multi-agent systems.

This chapter begins with a section describing the Contract Net Protocol. Subsequent

sections describe the conversational notions used for modelling the protocol as a joint

activity: namely actions, social commitments, illocutionary points and agent participations.

This chapter concludes with a detailed account of a conversation example between agents

using the protocol.

4.2 The Contract Net Protocol

The Contract Net Protocol (Smith, 1980) is a high-level protocol for the negotiation and

delegation of actions among distributed agents. This protocol is described as a mutual

selection strategy in which an agent (the manager) delegates the performance of actions to

suitable candidates (the contractors) from a collection of contender agents (the bidders).

65

An instance of the Contract Net Protocol (CNP) begins when a manager attempts to

delegate actions by sending a request for bids to agents that could potentially perform these

actions. Agents who are willing submit a bid showing their abilities to perform these

actions. The manager then evaluates the submitted bids and selects the most suitable bidder

and awards the contract to that bidder (i.e., offers the execution of the actions). Once the

contract is awarded, the acceptance of this awarding makes the awarded agent the

contractor, that is, the agent executing the actions. Finally, the protocol terminates when

the contractor submits the results of the actions to the manager.29

To model the CNP in terms of the model for conversations, it is necessary to identify the

various information, actions, social commitments and illocutionary points that take place in

interactions between managers and contractors. Sections below define these elements.

4.3 Information

There are five types of information that can be communicated in the CNP:

• the requirements (for producing a bid),

• the bids themselves,

• the contracts,

• the notification of the awarding or rejection of bids, and

• the results of executing a contract.

The class Requirement is a subclass of Data which specifies an action and its constraints

(where the constraints could be action dependencies, maximum costs afforded, times of

expected execution, and so on). The requirements for a bid is a set of instances of this class.

29 Although this description is the more representative of the CNP, minor variants exist. As described by R.G.
Smith (1980), variations include, for example, those where the contractor transmits preliminary results while
executing an action, and those with various contractors simultaneously performing actions.

66

The type definitions BidItem and ContractItem specify the types of the items that compose

bids and contracts, respectively. These items are defined to have the same type as a

requirement.

The class EvaluationResult is used for notifying whether or not a bid has been awarded for

execution. This class (which inherits from Data) solely defines a Boolean value to indicate

the awarding (or not) of a contract.

Lastly, the class ResultsItem defines the type of the instances returned after executing a

contract. This class inherits from Requirement and defines the variable outcome to hold the

results of executing the inherited action.

4.4 Actions

There are three actions involved in the CNP:

• To submit a bid: in which a bidder creates and submits a bid to a manager.

67

• To evaluate a bid: in which a manager evaluates a bid and informs a bidder of the

outcome of this evaluation, and

• To execute a contract: in which a bidder executes an awarded contract and submits

its results to a manager.

These actions are defined in the subsections below.

4.4.1 Bidding

Bidding is an action in which an agent produces and announces a bid to another agent.

This action is modelled as a class named ToBid that inherits from ToProduce and

ToProposeToDischarge, and which declares the variables bidder (as the producer and

discharger), manager (as the receiver and discharged), and requirements (as the abiding

criteria for the production of the bid). It also specifies that the data produced and

communicated as a bid (i.e., a set of objects of type BidItem).

Based on this definition, the type Bidding is defined as the union of (i.e., as the

polymorphic type of) the classes ToBid, CompositeActing and ProposingToDischarge.30

30 Note that the time interval specified in the classes CompositeActing and ProposingToDischarge gets
unified in this definition. This unification specifies that a proposal to discharge the action will occur within
the interval when the action is performed.

68

4.4.2 Evaluating a Bid

Evaluating a bid is an action in which a manager announces to a bidder whether or not a

submitted bid is awarded as the contract for execution. This action is defined as a class

named ToEvaluateBid that inherits from ToProduce and ToProposeToDischarge and which

declares the variables manager (as the producer and discharger), bidder (as the receiver

and discharged) and bid (as the bid submitted for evaluation). This definition also specifies

that the awarding (or not) of a contract is communicated through an object of type

EvaluationResult.

Based on this definition, the action EvaluatingBid is defined as the union of the classes

ToEvaluateBid, CompositeActing and ProposingToDischarge.

4.4.3 Executing a Contract

Performing a contract is an action in which a contractor executes a contract and

communicates the results to the manager. This action is defined as a class named

ToExecuteContract that inherits from ToProduce and ToProposeToDischarge and which

declares the variables contractor (as the producer and discharger), manager (as the

69

receiver and discharged) and contract (as the actions to execute). This definition also

specifies that this action results in a non-empty set of instances of type ResultsItem.

Based on this definition, the action ExecutingContract is defined as the union of the classes

ToExecuteContract, CompositeActing and ProposingToDischarge.

4.5 Social Commitments

Three axioms identify the social commitments that involve the aforementioned actions. As

such, these axioms specify commitments to bid, commitments to evaluate a bid, and

commitments to execute a contract.

4.5.1 Commitment to Bid

The axiom isCommitmentToBid is a function that receives a Bidding action and returns a

social commitment that has as its creditor and debtor the manager and bidder of the action,

and where the action of the commitment is the given Bidding action.

70

4.5.2 Commitment to Evaluate a Bid

Along the same lines, the axiom isCommitmentToEvaluateBid is a function that receives an

EvaluatingBid action and returns a social commitment that has as its creditor and debtor the

bidder and manager of the action, and where the action of the commitment is the given

EvaluatingBid action.

4.5.3 Commitment to Execute a Contract

Lastly, the axiom isCommitmentToExecuteContract is a function that receives an

ExecutingContract action and returns a social commitment that has as its creditor and

debtor the manager and contractor of the action, where the action of the commitment is the

given EvaluatingBid action.

71

The next section shows how these axioms support the definition of the illocutionary points

used in CNP interactions.

4.6 Illocutionary Points

This section specifies the composition of the illocutionary points used by agents to

negotiate commitments in the CNP. These illocutionary points include proposals to submit

a bid, acceptances to execute a contract, and informing the submission of results, among

others.

4.6.1 Proposing to Bid

CNP interactions begin when a manager requests that a prospective bidder produce and

submit a bid that adheres to certain required criteria. This communication is supported by

the axioms isProposeToAdoptBidding and isInformRequirements.

The axiom isProposeToAdoptBidding defines a function that receives a Bidding action and

an interval time within which a reply is expected, and returns a proposal to adopt a social

commitment to the bidding action.

In addition, the axiom isInformRequirements is a function that receives a set of

requirements as input and returns an inform containing such requirements.

72

4.6.2 Accepting or Rejecting to Bid

Once a request for bids has been issued, it is expected that the request will be replied to

with an acceptance or a rejection (as specified by the Protocol for Proposals). To support

the acceptances to such requests, the axiom isAcceptToAdoptBidding defines a function that

receives a Bidding action and returns an acceptance to adopt committing to this action.

Agents receiving a request for bids can decline to commit to such a request (e.g., they are

not capable of performing the requested actions, they cannot accommodate the execution of

the actions under current state constraints). As such, the axiom isRejectToAdoptBidding

defines a function that receives a Bidding action as input and returns a rejection to commit

to this action.

4.6.3 Submitting a Bid for Evaluation

In the event that a request for bid is accepted, the bidder is now responsible for producing

and submitting a bid to the manager. This implies that once that the bid is created the

bidder needs to submit this bid, propose discharging the commitment that she is to submit

it, and propose that the manager evaluate it.

This communication is modelled through the axioms isProposeToDischargeBidding,

isInformBid and isProposeToAdoptEvaluating, which specify the illocutionary points for

73

proposing to discharge the commitment to bid, for informing a bid, and for proposing to

adopt the commitment to evaluate a bid, respectively.

Proposing to Discharge Bidding

The axiom isProposeToDischargeBidding is a function that receives a Bidding action and

an interval (within which a reply is expected), and returns a proposal to discharge a social

commitment to do the given bidding action.

Informing a Bid

The axiom isInformBid is a function that receives a bid and returns an inform containing

such a bid.

Proposing to Adopt Evaluating a Bid

Finally, the axiom isProposeToAdoptEvaluating is a function that receives an

EvaluatingBid action and an interval specifying the expected reply time, and returns a

proposal to adopt a social commitment to perform this evaluating action.

74

4.6.4 Accepting To Evaluate a Bid

Once a bid has been submitted for evaluation, it is expected that the manager receiving the

bid will reply both to the proposal that the bidder is no longer committed to submit a bid,

and to the proposal that he evaluate the just submitted bid.

These acceptances are modelled through the axioms isAcceptToDischargeBidding and

isAcceptToAdoptEvaluating, which specify the illocutionary points for accepting the

discharge of bidding, and accepting the adoption of evaluating a bid, respectively.

Accepting to Discharge Bidding

The axiom isAcceptToDischargeBidding is a function that receives a Bidding action as

input and returns an acceptance to discharge a social commitment to this bidding action.

Accepting to Adopt Evaluating a Bid

Likewise, the axiom isAcceptToAdoptEvaluating is a function that receives an

EvaluatingBid action as input and returns an acceptance to adopt a social commitment to

perform this evaluating action.

75

4.6.5 Awarding a Contract

After evaluating the merits of a bid, a manager is expected to communicate to the bidder

whether or not she is awarded the execution of the contract. To communicate this

awarding, the manager sends:

• a proposal to discharge the commitment that he evaluates the bid (given that he has

reached a conclusion),

• the affirmative result of the evaluation,

• the awarded contract, and

• a proposal to adopt a commitment in which the bidder does this contract.31

This communication is supported by the axioms isProposeToDischargeEvaluating,

isInformEvaluation, isInformContract and isProposeToAdoptExecuting, which specify the

illocutionary points for proposing to discharge evaluating, for informing the result of the

evaluation, for informing a contract, and for proposing to adopt executing the contract,

respectively.

Proposing to Discharge Evaluating a Bid

The axiom isProposeToDischargeEvaluating is a function that receives an EvaluatingBid

action and an interval specifying an expected reply time, and returns a proposal to

discharge a social commitment to do the evaluation.

31 The alternate outcome to the awarding of a contract is the rejection of the bid. This rejection is simply
defined as the issuing of a proposal to discharge the evaluation of the bid along with an inform in which the
value of the result of the evaluation is false.

76

Informing the Results of an Evaluation

The axiom isInformEvaluation is a function that receives an instance of type

EvaluationResult and returns an inform for this result.

Informing a Contract

Likewise, the axiom isInformContract is a function that informs a contract.

Proposing to Adopt Executing a Contract

Lastly, the axiom isProposeToAdoptExecuting is a function that receives an instance of

type ExecutingContract and an interval indicating an expected time of reply, and returns a

proposal to adopt this executing action.

77

4.6.6 Accepting the Evaluation of a Bid

After a manager announces the outcome of an evaluation, it is expected that the (failed or

awarded) bidder will acknowledge this outcome by accepting that the manager is no longer

committed to evaluate the bid.

To that end, the axiom isAcceptToDischargeEvaluating is defined as a function that returns

an illocutionary point accepting to discharge a commitment to evaluate a bid.

4.6.7 Accepting or Rejecting the Awarding of a Contract

Once a contract has been awarded, the bidder must confirm whether or not she will execute

the contract by accepting or rejecting the proposal for its execution.32

32 One reason for agents to reject the awarding of a contract is that they lack the necessary resources for its
execution. As explained by J. Ferber (1999), one strategy to allocate resources for bids is to secure these
resources at the time of bidding. This strategy, which he called early commitment, allows the straightforward
execution of a contract (since resources are allocated beforehand), but at the cost of their sub-optimal use if
the awarding does not happen. A second strategy consists of submitting a bid without securing the resources
needed for execution. The disadvantage of this strategy, which he called late commitment, is that agents may
be unable to allocate the resources for executing a contract if these resources are scarce at the time of the
awarding. In such cases, agents may have no other option than to reject the awarding of the contract.

78

As such, the axioms isAcceptToAdoptExecuting and isRejectToAdoptExecuting define the

illocutionary points for accepting and rejecting the adoption of a commitment to execute a

contract, respectively.

4.6.8 Executing a Contract and Submitting Results

In the event that a contractor accepts to execute the awarded action, it is expected that the

results of the action will be communicated to the manager.

To that end, the axioms isProposeToDischargeExecuting and isInformResults define the

illocutionary points for proposing to discharge executing the contract, and for submitting

the results of its execution, respectively.

79

4.6.9 Accepting the Results of a Contract

Lastly, after the contract has been executed and the results submitted to the manager, it is

expected (if these results are satisfactory) that the manager will acknowledge their

acceptance.

As such, the axiom isAcceptToDischargeExecuting defines the illocutionary point that

accepts the discharge of executing a contract.

To briefly recap, this section has introduced illocutionary point definitions for the CNP.

The next section will show how these definitions model the communicational participations

of agents interacting in the CNP.

4.7 Participants

The CNP involves two types of participants: a manager and a contractor.

As expected from a behavioural model, the interactions of these participants are specified

as utterances constrained by committal preconditions. This means that (for example) for a

contractor to submit a bid it is required that there exists an obligation in which she submits

a bid.

80

The following subsections describe the communicational participations of managers and

contractors under this view.

4.7.1 Manager

The class Manager (which is shown in Figure 18 and Figure 19) is a subclass of Agent that

defines operations for requesting a bid, for accepting a bid for evaluation, for notifying

whether or not a contract is awarded for execution, and for receiving the results of

executing a contract. These operations (along with other private operations that support

them) are described in the subsections below.

Requesting a Bid

The operation RequestingBid defines the behaviour for requesting a bid. This operation is

defined as the sequential composition of the operations ProposeToAdoptBidding and

SendUtterance, which are described below.

The operation ProposeToAdoptBidding returns a speech act where the speaker and the

addressee are the manager and bidder of the provided Bidding action (and where the

manager/speaker is also the current manager instance executing the operation). This

definition also specifies that the resulting speech act contains a proposal to adopt a

commitment to bid and an inform indicating the requirements for the bid.33

Lastly, the operation SendUtterance, which is inherited from the class Agent,

communicates a speech act (the one resulting from ProposeToAdoptBidding) between the

speaker and the addressee of the speech act.

33 This Inform illocutionary point informs the same requirements as those listed in the bidding action being
proposed. This duplication was allowed for clarity of the example, although other more optimal definitions
may not include it. From the point of view of the specification, this redundancy does not create a significant
overhead given the referential nature of Object-Z variables.

81

Figure 18. Definition of the class Manager (part 1 of 2).

82

Evaluating a Bid

The operation EvaluatingBid defines the behaviour for accepting a bid for evaluation. In

brief, this operation receives a Bidding action for discharge and an EvaluatingBid action for

adoption, and evaluates whether or not these actions specify the same agent as their bidder,

and whether or not the manager (i.e., the current instance) holds obligations to reply to a

proposal to discharge the Bidding action and to a proposal to adopt the EvaluatingBid

action (as specified by the axioms existsReplyToProposeToDischargeBidding and

existsReplyToProposeToAdoptEvaluating, which are defined next). The fulfilment of these

conditions leads to the operations AcceptToDischargeBidding and

AcceptToAdoptEvaluating (which define speech acts for accepting to discharge bidding,

and for accepting to adopt the evaluation of a bid, respectively) followed by the operation

SendUtterance.

The axiom existsReplyToProposeToDischargeBidding is a function that assesses whether

or not a provided set of obligations contains a Speaking action in which the manager is able

to reply to a proposal to discharge a given Bidding action.

83

Figure 19. Definition of the class Manager (part 2 of 2).

84

Likewise, the axiom existsReplyToProposeToAdoptEvaluating assesses whether or not a

provided set of obligations contains a Speaking action in which the manager is able to reply

to a proposal to adopt the given EvaluatingBid action.

Awarding a Contract

The operation AwardingContract defines the behaviour for awarding the execution of a

contract. Besides defining an instance of type EvaluationResult that holds a true value, this

operation receives an EvaluatingBid action for discharge and an ExecutingContract action

for adoption, and evaluates whether or not these actions specify the same agent as their

bidder and contractor (respectively), and whether or not the manager holds an obligation to

propose discharging the EvaluatingBid action (as specified below by the axiom

existsSpeakToProposeToDischargeEvaluating). The fulfilment of these conditions leads to

the operations ProposeToDischargeEvaluating and ProposeToAdoptExecuting (which

define speech acts for proposing to discharge the evaluation of a bid, and for proposing to

adopt the execution of a contract, respectively) followed by the operation SendUtterance.

85

The axiom existsSpeakToProposeToDischargeEvaluating is a function that assesses

whether or not a provided set of obligations contains a Speaking action in which the

manager is able to reply to a proposal to discharge the given EvaluatingBid action.

Rejecting a Bid

The operation RejectingBid specifies the behaviour for rejecting a bid (which is the

alternative outcome to awarding the execution of a contract). Besides defining an instance

of type EvaluationResult that holds a false value, this operation receives an EvaluatingBid

action for discharge, and evaluates whether or not the manager holds an obligation to

propose discharging the action (as specified by the previously defined axiom

existsSpeakToProposeToDischargeEvaluating). The fulfilment of these conditions leads to

the sequential composition of the operations ProposeToDischargeEvaluating (which was

also described earlier) and SendUtterance.

Accepting Results of a Contract

Lastly, the operation AcceptingResults specifies the behaviour for accepting a proposal to

discharge the execution of a contract. This operation evaluates whether or not the manager

holds an obligation in which he replies to a proposal to discharge the execution of a

contract (as specified below by the axiom existsReplyToProposeToDischargeExecuting). If

86

true, this condition leads to the operations AcceptToDischargeExecuting (which defines a

speech act for accepting to discharge the execution of a contract) and SendUtterance.

The axiom existsReplyToProposeToDischargeExecuting is a function that assesses whether

or not a provided set of obligations contains a Speaking action in which the manager is able

to reply to a proposal to discharge the given ExecutingContract action.

The next section describes the counterpart agent to a manager. This agent, which is called a

contractor, is the agent with which managers interact to request bids and the execution of

contracts.

4.7.2 Contractor

Contractors are those agents in the CNP that submit bids and execute contracts.

The class Contractor (which is shown in Figure 20, Figure 21 and Figure 22) is a subclass

of Agent that defines operations for

• accepting and rejecting requests for bids,

• submitting bids for evaluation,

87

• accepting and rejecting the awarding of contracts, and

• submitting the results of executing contracts.

These operations are described below.

Accepting a Request for Bid

The operation AcceptingToBid specifies the behaviour for committing to submit a bid. This

operation evaluates whether or not the bidder holds an obligation to reply to a proposal to

submit a bid (as specified below by the axiom existsReplyToProposeToAdoptBidding). If

true this condition leads to the operations AcceptToAdoptBidding (which defines a speech

act for accepting to submit a bid) and SendUtterance.

The axiom existsReplyToProposeToAdoptBidding is a function that assesses whether or not

a provided set of obligations contains a Speaking action in which the bidder is able to reply

to a proposal to adopt the given Bidding action.

Rejecting a Request for Bid

Along the same lines, the operation RejectingToBid specifies the behaviour of a bidder that

rejects committing to submit a bid. This operation checks whether or not the bidder holds

88

an obligation to reply to a proposal to submit a bid (as defined by the previously defined

axiom existsReplyToProposeToAdoptBidding), which leads to the operations

RejectToAdoptBidding (which defines a speech act rejecting to submit a bid) and

SendUtterance.

Submitting a Bid for Evaluation

The operation SubmittingBid specifies the behaviour for submitting a bid for evaluation.

This operation receives a Bidding action for discharge and an EvaluatingBid action for

adoption, and evaluates whether or not these actions specify the same agent as their

manager, and whether or not the bidder (i.e., the current bidder instance) holds an

obligation to propose discharging the Bidding action (as specified below by the axiom

existsSpeakToProposeToDischargeBidding). The fulfilment of these conditions leads to

the conjunctive composition of the operations ProposeToDischargeBidding and

ProposeToAdoptEvaluating (which define speech acts for proposing to discharge the

submission of a bid, and for proposing to adopt the execution of a contract, respectively)

followed by the operation SendUtterance.

The axiom existsSpeakToProposeToDischargeBidding is a function that assesses whether

or not a set of obligations contains a Speaking action in which the bidder is able to propose

to discharge a given Bidding action.

89

Accepting the Rejection of a Bid

The operation AcceptingRejectionOfBid specifies the behaviour for accepting that a bid was

not awarded for execution. This operation receives an EvaluatingBid action and evaluates

whether or not the bidder holds an obligation to reply to a proposal to discharge this action.

In addition, this operation defines an ExecutingContract action that is compatible to the

EvaluatingBid action (i.e., the executing action covers all possible contracts that could

result from the evaluating action), and evaluates whether or not the bidder holds a proposal

to adopt the ExecutingContract action (as specified below by the axioms existsReplyTo-

ProposeToDischargeEvaluating and existsReplyToProposeToAdoptExecuting).

The fulfilment of these conditions leads to the composition of the operations

AcceptToDischargeEvaluating (which defines a speech act accepting to discharge the

evaluation of a bid) and SendUtterance.

The axiom existsReplyToProposeToDischargeEvaluating is a function that assesses

whether or not a provided set of obligations contains a Speaking action in which the bidder

is able to reply to a proposal to discharge a given EvaluatingBid action.

90

Figure 20. Definition of the class Contractor (part 1 of 3).

91

The axiom existsReplyToProposeToAdoptExecuting assesses whether or not a provided set

of obligations contains a Speaking action in which the bidder is able to reply to a proposal

to adopt a given ExecutingBid action.

Accepting an Awarded Contract

The operation AcceptingAward specifies the behaviour for accepting to execute a contract.

This operation receives an EvaluatingBid action for discharge and an ExecutingContract

action for adoption, and evaluates whether or not these actions specify the same agent as

their manager, and whether or not the bidder holds obligations to reply to a proposal to

discharge the EvaluatingBid action, and to reply to a proposal to adopt the

ExecutingContract action (as indicated by the previously defined axioms

existsReplyToProposeToDischargeEvaluating and

existsReplyToProposeToAdoptExecuting). The fulfilment of these conditions leads to the

operations AcceptToDischargeEvaluating (which was also described earlier) and

AcceptToAdoptExecuting (which defines a speech act accepting to adopt the execution of a

bid) followed by the operation SendUtterance.

92

Figure 21. Definition of the class Contractor (part 2 of 3).

93

Rejecting an Awarded Contract

Along the same lines, the operation RejectingAward specifies the behaviour of a bidder that

rejects to adopt committing to execute a contract. This operation receives an EvaluatingBid

action for discharge and an ExecutingContract action for adoption, and evaluates whether

or not these actions specify the same agent as their manager, and whether or not the bidder

holds obligations to reply to a proposal to discharge the EvaluatingBid action, and to reply

to a proposal to adopt the ExecutingContract action (as specified by the previously defined

axioms existsReplyToProposeToDischargeEvaluating and existsReplyToProposeToAdopt-

Executing). If true, these conditions lead to the composition of the operations

AcceptToDischargeEvaluating (which was also described above) and RejectToAdopt-

Executing (which defines a speech act rejecting to adopt executing a contract.) followed by

the operation SendUtterance.

Submitting Results of Executing a Contract

The operation SubmittingResults specifies the behaviour for proposing to discharge being

committed to the execution of a contract and for sending the results of its execution. This

operation receives an ExecutingContract action for discharge, and evaluates whether or not

the bidder holds an obligation to propose to discharge this action (as specified below by the

axiom existsSpeakToProposeToDischargeExecuting). If true, this condition leads to the

operations ProposeToDischargeExecuting (which defines a speech act that proposes to

discharge the execution of the contract and communicates the results of its execution) and

SendUtterance.

The axiom existsSpeakToProposeToDischargeExecuting is a function that assesses whether

or not a provided set of obligations contains a Speaking action in which the bidder can

propose to discharge the ExecutingBid action.

94

Figure 22. Definition of the class Contractor (part 3 of 3).

95

This section presented the communicational operations that agents in the roles of managers

and contractors can perform (as long as their committal preconditions are met). However,

these operations are disembodied of any concrete interaction. The next section will show

how these operations are assembled into structured contract net interactions.

4.8 The Contract Net Protocol as a Joint Activity

The class ContractNet (which is shown in Figure 23) is a subclass of JointActivity that

specifies the interactions that can occur in the CNP. This class defines two participants (a

manager and a contractor) and three actions in which they participate (bidding, evaluating

and executing). This class also defines that the actions specified in the bid are a subset of

those in the requirements, and that the actions in the contract are a subset of those in the

bid.

96

4.8.1 Interactions

The operation Interaction defines the sequences of interdependent agent operations making

the allowed interactions for the activity. This operation (which is illustrated as a

conversation protocol in Figure 24) specifies that a request for bid from a manager is

Figure 23. Definition of the Contract Net Protocol as a joint activity.

97

followed either by a rejection or an acceptance from the bidder.34 In the case of the

rejection, no other participation follows, thus signalling the end of the interaction. On the

other hand, the bidder’s acceptance to bid is followed by a submission of a bid, and the

manager’s acceptance to evaluate it. At this point, the manager either rejects the bid (which

if accepted by the contractor leads to the end of the interaction) or awards it as contract. In

the case of being awarded the contract, the contractor either rejects the awarding (ending

the interaction) or accepts the awarding. Lastly, this acceptance is followed by the

submission of results and the manager’s acceptance of those results.

It is worth noticing that this interaction specification would not be any different than ad hoc

conversation protocols if it was not supported by strict compositional principles. To

34 Although it is not explicitly modelled, we assume that counterproposals are followed by a rejection.

Figure 24. Protocol with the interactions in the joint activity ContractNet.

98

support this claim, section 4.11:Example Proof shows a proof on a segment of this

interaction specification.

4.9 Contract Net Society

The class ContractNetSociety is specified as a subclass of PFPsociety that defines

ContractNet as a joint activity where a manager requests to one or more bidders the

submission of a bid that abides by the same requirements.35

4.10 Example Conversation: Executing a Contract

Figure 25 shows a UML interaction diagram for an interaction in the contract net activity.

Specifically, it shows a conversation that begins with a request for bid and advances until

the contract is executed and its results submitted. This conversation is specified by the

sequence of the operations RequestingBid, AcceptingToBid, SubmittingBid, EvaluatingBid,

AwardingContract, AcceptingAward, SubmittingResults and AcceptingResults. Figure 26

and Figure 27 show the state of shared social commitments and obligations on the manager

and the contractor as this conversation evolves.

35 This definition was simplified to allow for variations of the CNP, such as those in which various contractors
are awarded the execution of actions (Smith, 1980).

99

4.10.1 Requesting a Bid

As shown in Figure 25, the interaction begins with an utterance from the manager

(identified as m) to a contractor (identified as c) in which he requests that she submit a bid

based on the given requirements.

As specified in m’s operation RequestingBid, this speech act contains a Propose

illocutionary point (labelled α), proposing the adoption of a shared social commitment in

Figure 25. UML interaction diagram for a Contract Net conversation.

100

which c is responsible to m for an action Bidding in which c performs the action and

informs the results of the action to m (as before, the representation used in this figure has

been simplified for clarity). As shown in Figure 26, the uttering of this proposal triggers

the following conversational policy:

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal α results in the adoption of obligations in which c replies to

m’s proposal α (added as obligations 1 and 2 in Figure 26 on both the manager and

the contractor).36

4.10.2 Accepting to Bid

The next interaction (labelled as interaction 2 in Figure 25) specifies the execution of c’s

operation AcceptingToBid, in which she accepts committing to submit a bid (only if there is

an obligation to reply to a request for bid—which exists as obligations 1 and 2). Uttering

this acceptance results in the application of the following policies:

• Policy 2 (replying to a proposal discharges the obligation to reply): the acceptance

to uptake the operation proposed in α discharges the obligation to reply to α (which

deletes obligations 1 and 2 in Figure 26 on both the manager and the contractor).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in α causes the adoption of the

proposed commitment, in this case to submit a bid (added as commitment A in

Figure 26). In addition, this acceptance results in the adoption of obligations to

perform the joint action. As such, the contractor adopts obligations to produce and

communicate a bid (obligations 3 to 6), and the manager adopts obligations to

receive it (obligations 3 to 5).37

36 In the case of the contractor the acquired obligation is for voicing a reply, and in the case of the manager for
hearing it.
37 In this example, the action requested is that of the contractor washing a VW car.

101

Figure 26. State of shared social commitments and obligations of the manager and
contractor in the Contract Net conversation example (part 1 of 2).

102

• Policy 4 (accepting a ProposingToDischarge action obligates the discharger to

propose its discharge): the acceptance to adopt the action Bidding (which is a

subtype of ProposingToDischarge) results in the adoption of obligations in which c

(the discharger) is to propose to m (the discharged) discharging the action. These

obligations are added as obligations 6 and 7 on the manager, and 7 and 8 on the

contractor.

4.10.3 Submitting a Bid

The next interaction (labelled as interaction 3 in Figure 25) specifies the execution of c’s

operation SubmittingBid, in which a) she proposes to discharge the commitment to submit a

bid (only if there is an obligation in which c proposes to discharge the commitment that she

submit a bid—which exists as obligations 7 and 8); b) she informs a bid; and c) she

proposes to adopt a commitment in which m evaluates this bid. The uttering of these

proposals (which are labelled β and γ) triggers the following conversational policies:

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal β results in the adoption of obligations in which m replies to

β (added as obligations 8 and 9 on the manager, and 9 and 10 on the contractor),

and

• Policy 1 (ditto): the uttering of proposal γ results in the adoption of obligations in

which m replies to γ (added as obligations 10 and 11 on the manager, and 11 and 12

on the contractor).

4.10.4 Accepting a Bid for Evaluation

The next interaction (labelled as interaction 4 in Figure 25) specifies the execution of m’s

operation EvaluatingBid, in which m accepts to discharge the commitment that c submit a

bid, and accepts to evaluate the submitted bid. These acceptances are uttered if obligations

exist in which m replies both to a proposal to discharge submitting a bid (which exist as

obligations 8 and 9) and to a proposal to adopt evaluating a bid (which exist as obligations

103

10 and 11). The uttering of these acceptances triggers the following conversational

policies:

• Policy 2 (replying to a proposal discharges the obligations to reply): the acceptance

to uptake the operation proposed in β discharges the obligations to reply to β (thus

deleting obligations 8 and 9 on the manager, and 9 and 10 on the contractor).

• Policy 2 (ditto): the acceptance to uptake the operation proposed in γ discharges the

obligations to reply to γ (thus deleting obligations 10 and 11 on the manager, and 11

and 12 on the contractor).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in β causes the discharge of the

commitment to submit a bid (labelled as commitment A in Figure 26) and all

corresponding obligations (i.e., obligations 3, 4 and 5 on the manager, and 3 to 6 on

the contractor).

• Policy 3 (ditto): the acceptance to uptake the operation proposed in γ causes the

adoption of a commitment in which m evaluates a bid for c (added as commitment

B), and its corresponding obligations (where the manager is obligated to evaluate a

bid and communicate the result of this evaluation—which are obligations 12 to

15—and the contractor is obligated to hear this evaluation—as described by

obligations 13 to 15).

• Policy 4 (accepting to discharge a ProposingToDischarge action discards the

obligations in which the discharger of the action is to propose its discharge): the

acceptance to discharge the commitment to submit a bid results in the discharge of

the obligations in which c is to propose discharging the commitment that she

submits a bid (which deletes obligations 6 and 7 on the manager, and 7 and 8 on the

contractor), and lastly

104

Figure 27. State of shared social commitments and obligations of the manager and
contractor in the Contract Net conversation example (part 2 of 2).

105

• Policy 4 (accepting to adopt a ProposingToDischarge action obligates the

discharger of the action to propose its discharge): the acceptance to adopt the action

to evaluate a bid results in the adoption of obligations in which m (the discharger) is

to propose c (the discharged) to discharge this action (which adds obligations 16

and 17 on both the manager and the contractor).

4.10.5 Awarding a Contract

The next interaction (labelled as interaction 5 in Figure 25) specifies the execution of m’s

operation AwardingContract, in which m proposes to discharge that he evaluates a bid,

informs the result of the evaluation, informs a contract, and proposes that the contractor

adopt executing the given contract. The committal precondition for this utterance is that

there exist obligations in which m is to propose discharging the commitment that he

evaluates a bid for c (which are obligations 16 and 17). The uttering of these proposals

(which are labelled δ and ε) triggers the following conversational policies:

• Policy 1 (the uttering of a proposal obligates the addressee to reply to the proposal):

the uttering of proposal δ results in the adoption of obligations in which c replies to

δ (added as obligations 18 and 19 in Figure 27 on both the manager and the

contractor), and

• Policy 1 (ditto): the uttering of proposal ε results in the adoption of obligations in

which c replies to ε (added as obligations 20 and 21 on both the manager and the

contractor).

4.10.6 Accepting the Awarding of a Contract

The next interaction (labelled as interaction 6 in Figure 25) specifies the execution of c’s

operation AcceptingAward, which specifies that c accepts the discharge of the commitment

that m evaluates a bid for c (only if there are obligations in which c replies to a proposal to

discharge this commitment—which exist as obligations 18 and 19), and that c accepts to

adopt executing a contract (only if there are obligations in which c replies to a proposal to

106

adopt executing a contract—which exist as obligations 20 and 21). The uttering of these

acceptances results in the application of the following policies:

• Policy 2 (replying to a proposal discharges the obligation to reply): the acceptance

to uptake the operation proposed in δ discharges the obligations to reply to δ (which

deletes obligations 18 and 19 on both the manager and the contractor).

• Policy 2 (ditto): the acceptance to uptake the operation proposed in ε discharges the

obligations to reply to ε (which deletes obligations 20 and 21 on both the manager

and the contractor).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in δ causes the discharge of the

commitment to evaluate a bid (labelled as commitment B) as well as its

corresponding obligations (which are obligations 12 to 15 on the manager, and 13 to

15 on the contractor).

• Policy 3 (ditto): the acceptance to uptake the operation proposed in ε causes the

adoption of a commitment in which c executes a contract for m (added as shared

commitment C). The adoption of this commitment also results in the adoption of

obligations in which the contractor executes the contract and informs its results

(added as obligations 22 to 25) and the manager receives such results (added as

obligations 22 to 24).

• Policy 4 (accepting to discharge a ProposingToDischarge action discharges the

obligations in which the discharger proposes the discharge of the action): the

acceptance to discharge the commitment to evaluate a bid results in the discharge of

the obligations in which m is to propose discharging the commitment that he

evaluates a bid (which deletes obligations 16 and 17 on both the manager and the

contractor), and lastly,

107

• Policy 4 (accepting to adopt a ProposingToDischarge action obligates the

discharger to propose the discharge of the action): the acceptance to adopt the

action to execute a contract results in the adoption of obligations in which c (the

discharger) is to propose to m (the discharged) discharging this action (which adds

obligations 25 and 26 on the manager, and 26 and 27 on the contractor).

4.10.7 Submitting Results of Executing a Contract

The next interaction (labelled as interaction 7 in Figure 25) specifies the execution of c’s

operation SubmittingResults, which specifies that c proposes to m the discharge of the

commitment that she executes the contract (only if there are obligations in which she

proposes to discharge the action—which exist as obligations 25 and 26). The uttering of

this proposal (labelled ζ) triggers the following conversational policy:

• Policy 1 (the uttering of a proposal obligates the addressee to reply to the proposal):

the uttering of proposal ζ results in the obligations in which m replies to ζ (which

adds obligations 27 and 28 on the manager, and 28 and 29 on the contractor).

4.10.8 Accepting the Results of a Contract

The last interaction in this conversation (labelled as interaction 8 in Figure 25) indicates the

execution of m’s operation AcceptingResults, which specifies that m accepts to discharge

the execution of a contract. This acceptance is uttered if obligations exist in which m

replies to a proposal to discharge the execution of the contract (which exist as obligations

27 and 28). The uttering of this acceptance results in the application of the following

policies:

• Policy 2 (replying to a proposal discharges the obligation to reply): the acceptance

to uptake the operation proposed in ζ discharges the obligation to reply to ζ (thus

deleting obligations 27 and 28 on the manager, and 28 and 29 on the contractor).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in ζ causes the discharge of the

108

commitment to execute a contract (labelled as commitment C) as well as its

corresponding obligations (which are obligations 22 to 24 on the manager, and 22 to

25 on the contractor), and lastly,

• Policy 4 (accepting to discharge a ProposingToDischarge action discards the

obligations in which the discharger is to propose discharging the action): the

acceptance to discharge the commitment to execute a contract results in the

discharge of the obligations in which m is to propose discarding the commitment to

execute the contract (therefore deleting obligations 25 and 26 on the manager, and

26 and 27 on the contractor).

At this point, the interaction ends leaving none of the shared social commitments and

obligations adopted during the interaction, thus indicating that this conversation does not

result in commitments and obligations that outlive the activity.

To conclude, Figure 28 shows a snapshot of the program that was built and used to simulate

the conversation of agents in the model for conversations. The figure shows an

intermediate state of the Contract Net conversation described in this example.38

4.11 Example Proof

This section presents a brief proof to illustrate the formal inference supporting the model

for conversations. This proof is based on the Contract Net Protocol example presented in

the previous sections, and it shows that, given a request for bids from a manager to a

contractor, it is possible to infer that the contractor can reply with either an acceptance or a

rejection to bid.

38 Refer to section 6.3: Implementation for additional information on the issues related to the test bed
implementation.

109

Figure 28. Snapshot of the simulation of the Contract Net conversation example.

110

4.11.1 Assumptions

This proof specifies that there exists a manager (Alice) and a contractor (Bob), and that the

manager has requested that the contractor submit a bid (i.e., the manager has performed the

method RequestingBid found in the class Manager). These assumptions are defined as

follows.

The outcome to prove is that Bob either accepts or rejects this request (i.e., he performs the

method AcceptingToBid or RejectingToBid found in the class Contractor). This result

(which is shown below) represents the first message sequence in the interaction defined in

the Contract Net joint activity.

Lastly, it is assumed that once Alice has uttered the request, Bob will reply to it (rather than

just ignore it, for example).

4.11.2 Supporting Predicates

The following definitions are used throughout the proof. These definitions are based on the

Object-Z specifications given in Chapter 3 (the model for conversations) and the current

chapter.

The method SendUtterance in the class Agent is shown below. This method specifies that

an uttered utterance becomes the current utterance of the speaker and addressee.39

39 This definition is a simplification of the original definition given in Chapter 3, which specifies that
utterances must be queued in the inbox of agents while they wait to become the current utterance to be
processed through the norms of the society. The version herein presented simplifies this process with the only
intention to make the proof more accessible.

111

Next is the definition of the conversation policy PFPpolicy1. This policy specifies that

uttering a proposal creates obligations to reply to the proposal.

This policy makes use of the predicate isReplyTo, which specifies that the reply to a

proposal is either an acceptance or a rejection. This predicate is defined below.

Next are the operations RequestingBid and ProposeToAdoptBidding found in the class

Manager. These operations specify the behaviour for requesting a bid.

112

Shown below are the operations AcceptingToBid and AcceptToAdoptBidding (which

specify the behaviour for accepting to commit to bid), and RejectingToBid and

RejectToAdoptBidding (which specify the behaviour for rejecting to commit to bid). These

operations are found in the class Contractor.

113

Lastly, the predicate existsReplyToProposeToAdoptBidding is shown below. This predicate

is referenced by the operations AcceptingToBid and RejectingToBid above.

4.11.3 Proof

The steps below show the process followed to conclude that given that Alice has requested

Bob to submit a bid, Bob either accepts or rejects the request. The first half of the proof

(steps 1 to 52) introduces the assumptions and shows that these assumptions lead to the

uptake of obligations to reply. The second half (steps 53 to 88) shows that these

obligations lead to either a reply accepting or a reply rejecting to submit a bid.

As such, the first step is to introduce the assumptions.

Step Result Justification

1 ∃ b:Bidding
• alice = b.manager ∧
 bob = b.bidder ∧
 alice.RequestingBid(b)

Assumption (Alice requests
Bob to submit a bid).

From these assumptions we derive the following about Alice and Bob.

114

Step Result Justification

2 alice = bid.manager ∧
bob = bid.bidder ∧
alice.RequestingBid(bid)

∃-Elimination (bid=b).
Step 1.

3 alice = bid.manager ∧-Elimination. Step 2.

4 bob = bid.bidder ∧-Elimination. Step 2.

5 alice.RequestingBid(bid) ∧-Elimination. Step 2.

The steps below show how these assumptions lead to the request being Alice and Bob’s

current utterance. First, Alice’s operation RequestingBid is decomposed into the operations

ProposeToAdoptBidding and SendUtterance.

Step Result Justification

6 ∀ m:Manager; b:Bidding; s:ToSpeak
• m.RequestingBid(b) ⇔
 m.ProposeToAdoptBidding(b, s) ∧
 m.SendUtterance(s)

Definition of the operation
RequestingBid in the class
Manager

7 alice.RequestingBid(bid) �
alice.ProposeToAdoptBidding(bid, request) ∧
alice.SendUtterance(request)

∀-Elimination (alice=m,
bob=c, bid=b, request=s) and
⇔-Elimination. Step 6.

8 alice.ProposeToAdoptBidding(bid, request) ∧
alice.SendUtterance(request)

Modus ponens. Steps 5 and
7.

9 alice.ProposeToAdoptBidding(bid, request) ∧-Elimination. Step 8.

10 alice.SendUtterance(request) ∧-Elimination. Step 8.

Next, that Alice is the speaker of the proposal and that she has uttered it to Bob results in

this utterance being Bob’s current utterance.

115

Step Result Justification

11 ∀ m:Manager; b:Bidding; s:ToSpeak; p:Propose
• m.ProposeToAdoptBidding(b, s) ⇔
 s.speaker = b.manager = m ∧
 s.addressee = b.bidder ∧
 p ∈ s.points ∧
 p.proposing ∈ Add ∧
 p.proposing.commitment =
 isCommitmentToBid(b)

Definition of the operation
ProposeToAdoptBidding in
the class Manager

12 alice.ProposeToAdoptBidding(bid, request) �
request.speaker = bid.manager = alice ∧
request.addressee = bid.bidder ∧
p1 ∈ request.points ∧
p1.proposing ∈ Add ∧
p1.proposing.commitment =
 isCommitmentToBid(bid)

∀-Elimination (alice=m,
bob=c, bid=b, request=s,
p1=p) and ⇔-Elimination.
Step 11.

13 request.speaker = bid.manager = alice ∧
request.addressee = bid.bidder ∧
p1 ∈ request.points ∧
p1.proposing ∈ Add ∧
p1.proposing.commitment =
 isCommitmentToBid(bid)

Modus ponens. Steps 9 and
12.

14 request.speaker = bid.manager = alice ∧-Elimination. Step 13.

15 alice = request.speaker Equality. Step 14.

16 alice = request.speaker ∧
alice.SendUtterance(request)

∧-Introduction. Steps 10 and
15.

17 request.addressee = bid.bidder ∧-Elimination. Step 13.

18 request.addressee = bob Equality. Steps 4 and 17.

19 p1 ∈ request.points ∧-Elimination. Step 13.

20 p1.proposing ∈ Add ∧-Elimination. Step 13.

21 p1.proposing.commitment =
 isCommitmentToBid(bid)

∧-Elimination. Step 13.

116

Step Result Justification

22 ∀ agent:Agent; s:ToSpeak
 • agent = s.speaker ∧
 agent.SendUtterance(s) �
 (∃ u:Utterance
 • u.speechAct = s ∧
 u = s.speaker.current ∧
 u = s.addressee.current)

Definition of the operation
SendUtterance in the class
Agent.

23 alice = request.speaker ∧
alice.SendUtterance(request) �
u1.speechAct = request ∧
u1 = request.speaker.current ∧
u1 = request.addressee.current

∀-Elimination (alice=agent,
request=s) and ∃-Elimination
(u1=u). Step 22.

24 u1.speechAct = request ∧
u1 = request.speaker.current ∧
u1 = request.addressee.current

Modus ponens. Steps 16 and
23.

25 u1.speechAct = request ∧-Elimination. Step 24.

26 p1 ∈ u1.speechAct.points Substitution. Steps 19 and 25.

27 u1 = request.addressee.current ∧-Elimination. Step 24.

28 u1 = bob.current Substitution. Steps 18 and 27.

29 bob.current = u1 Equality. Step 28.

30 bob.current = u1 ∧
p1 ∈ u1.speechAct.points

∧-Introduction. Steps 26 and
29.

The next steps show that this utterance leads to obligations in which Bob replies to Alice’s

request.

117

Step Result Justification

31 ∀ agent:Agent; u:Utterance; p:Propose
 • agent.current = u ∧
 p ∈ u.speechAct.points �
 (∃ s:Speaking
 • s.speaker = u.speechAct.addressee ∧
 s.addressee = u.speechAct.speaker ∧
 s.points = isReplyTo(p) ∧
 (agent = s.speaker � { s, s.voice } ⊆
 agent.obligations) ∧
 (agent = s.addressee � { s, s.hear } ⊆
 agent.obligations))

Definition of the
conversation policy
PFPpolicy1 (a proposal
commits agents to reply).

32 bob.current = u1 ∧
p1 ∈ u1.speechAct.points �
reply.speaker = u1.speechAct.addressee ∧
reply.addressee = u1.speechAct.speaker ∧
reply.points = isReplyTo(p1) ∧
(bob = reply.speaker � {reply, reply.voice} ⊆
bob.obligations) ∧
(bob = reply.addressee � {reply, reply.hear} ⊆
bob.obligations)

∀-Elimination (bob=agent,
u1=u, p1=p) and ∃-
Elimination (reply =s, a1=a,
r1=r). Step 31.

33 reply.speaker = u1.speechAct.addressee ∧
reply.addressee = u1.speechAct.speaker ∧
reply.points = isReplyTo(p1) ∧
(bob = reply.speaker � { reply, reply.voice} ⊆
bob.obligations) ∧
(bob = reply.addressee � { reply, reply.hear} ⊆
bob.obligations)

Modus ponens. Steps 30 and
32.

34 reply.speaker = u1.speechAct.addressee ∧-Elimination. Step 33.

35 reply.addressee = u1.speechAct.speaker ∧-Elimination. Step 33.

36 reply.points = isReplyTo(p1) ∧-Elimination. Step 33.

37 bob = reply.speaker � {reply, reply.voice} ⊆
bob.obligations

∧-Elimination. Step 33.

118

Step Result Justification

38 reply.speaker = request.addressee Substitution. Steps 25 and 34.

39 reply.speaker = bob Substitution. Steps 18 and 38.

40 bob = reply.speaker Equality. Step 39.

41 reply.addressee = request.speaker Substitution. Steps 25 and 35.

42 reply.addressee = alice Substitution. Steps 15 and 41.

43 {reply, reply.voice} ⊆ bob.obligations Modus ponens. Steps 37 and
40.

44 reply ∈ bob.obligations Set theory. Step 43.

So far, it has been derived that Bob has obligations to reply to Alice’s proposal (as

identified by the predicate isReplyTo). The steps below show that this reply contains either

an Accept or a Reject illocutionary point with identical characteristics to that of the Propose

illocutionary point found in Alice’s request.

Step Result Justification

45 ∀ p:↓Propose
• ∃ points:P1 IllocutionaryPoint;
 a:Accept; r:↓Reject
 • isReplyTo(p) = points ∧
 a.accepting = p.proposing ∧
 r.rejecting = p.proposing ∧
 ((a ∈ points ∧ r ∉ points) ∨
 (r ∈ points ∧ a ∉ points))

Definition of the predicate
isReplyTo.

46 isReplyTo(p1) = points1 ∧
a1.accepting = p1.proposing ∧
r1.rejecting = p1.proposing ∧
((a1 ∈ points1 ∧ r1 ∉ points1) ∨
 (r1 ∈ points1 ∧ a1 ∉ points1))

∀-Elimination (p1=p) and ∃-
Elimination (points1=points,
a1=a, r1=r). Step 45.

47 isReplyTo(p1) = points1 ∧-Elimination. Step 46.

48 a1.accepting = p1.proposing ∧-Elimination. Step 46.

119

Step Result Justification

49 r1.rejecting = p1.proposing ∧-Elimination. Step 46.

50 ((a1 ∈ points1 ∧ r1 ∉ points1) ∨
 (r1 ∈ points1 ∧ a1 ∉ points1))

∧-Elimination. Step 46.

51 reply.points = points1 Equality. Steps 36 and 47.

52 ((a1 ∈ reply.points ∧ r1 ∉ reply.points) ∨
 (r1 ∈ reply.points ∧ a1 ∉ reply.points))

Equality. Steps 50 and 51.

At this point Bob is committed to reply with an acceptance or a rejection. The steps below

show that this obligation results in Bob’s uttering of an acceptance (AcceptingToBid) or a

rejection (RejectingToBid). To reach this outcome it must first be derived that the predicate

existsReplyToProposeToAdoptBidding is true given Bob’s current obligations. This is

shown in the steps below.

Step Result Justification

53 ∀ agent:Agent; b:Bidding; s:Speaking; p:Propose
• existsReplyToProposeToAdoptBidding(agent,b)
 ⇔
 s ∈ agent.obligations ∧
 s.speaker = b.bidder ∧
 s.addressee = b.manager ∧
 s.points = isReplyTo(p) ∧
 p.proposing ∈ Add ∧
 p.proposing.commitment =
 isCommitmentToBid(b)

Definition of the predicate
existsReplyToPropose-
ToAdoptBidding

54 existsReplyToProposeToAdoptBidding(bob, bid)
⇐
reply ∈ bob.obligations ∧
reply.speaker = bid.bidder ∧
reply.addressee = bid.manager ∧
reply.points = isReplyTo(p1) ∧
p1.proposing ∈ Add ∧
p1.proposing.commitment =
 isCommitmentToBid(bid)

∀-Elimination (bob=agent,
bid=b, reply=s, p1=p, a1=a,
r1=r) and ⇔-Elimination.
Step 53.

120

Step Result Justification

55 reply.speaker = bid.bidder Substitution. Steps 4 and 39.

56 reply.addressee = bid.manager Substitution. Steps 3 and 42.

57 reply ∈ bob.obligations ∧
reply.speaker = bid.bidder ∧
reply.addressee = bid.manager ∧
reply.points = isReplyTo(p1) ∧
p1.proposing ∈ Add ∧
p1.proposing.commitment =
 isCommitmentToBid(bid)

∧-Introduction. Steps 20, 21,
36, 44, 55 and 56.

58 existsReplyToProposeToAdoptBidding(bob, bid) Modus ponens. Steps 54 and
57.

Up to this point it has been determined that Bob holds an obligation in which he replies to

Alice’s proposal. As stated at the beginning of the proof, it is assumed that Bob is willing

to utter (and is capable of uttering) such a reply. This assumption is added below.

Step Result Justification

59 bob.SendUtterance(reply) Assumption (Bob replies)

As indicated in Step 52, this reply is given as a speech act named reply that contains either

an acceptance or a rejection of the proposal. These two cases (that of an acceptance and

that of a rejection) are explored in the steps below.

The first assumption is that Bob accepts the proposal.

121

Step Result Justification

60 (a1 ∈ reply.points ∧ r1 ∉ reply.points) Assumption (Bob accepts)

61 ∀ c:Contractor; b:Bidding; s:ToSpeak; a:Accept;
 r:↓Reject
 • c.AcceptToAdoptBidding(b, s) ⇔
 s.speaker = b.bidder = c ∧
 s.addressee = b.manager ∧
 a.accepting ∈ Add ∧
 a.accepting.commitment =
 isCommitmentToBid(b) ∧
 a.accepting = r.rejecting ∧
 (a ∈ s.points ∧ r ∉ s.points)

Definition of the operation
AcceptToAdoptBidding in the
class Contractor.

62 bob.AcceptToAdoptBidding(bid, reply) ⇐
reply.speaker = bid.bidder = bob ∧
reply.addressee = bid.manager ∧
a1.accepting ∈ Add ∧
a1.accepting.commitment =
 isCommitmentToBid(bid) ∧
a1.accepting = r1.rejecting ∧
(a1 ∈ reply.points ∧ r1 ∉ reply.points)

∀-Elimination (bob=c, bid=b,
reply=s, a1=a, r1=r) and ⇔-
Elimination. Step 61.

63 reply.speaker = bid.bidder = bob Equality. Steps 4 and 55.

64 a1.accepting ∈ Add Equality. Steps 20 and 48.

65 a1.accepting.commitment =
 isCommitmentToBid(bid)

Equality. Steps 21 and 48.

66 a1.accepting = r1.rejecting Equality. Steps 48 and 49.

122

Step Result Justification

67 reply.speaker = bid.bidder = bob ∧
reply.addressee = bid.manager ∧
a1.accepting ∈ Add ∧
a1.accepting.commitment =
 isCommitmentToBid(bid) ∧
a1.accepting = r1.rejecting ∧
(a1 ∈ reply.points ∧ r1 ∉ reply.points)

∧-Introduction. Steps 56, 60,
63, 64, 65 and 66.

68 bob.AcceptToAdoptBidding(bid, reply) Modus ponens. Steps 62 and
67.

69 ∀ c:Contractor; b:Bidding; s:ToSpeak
• c.AcceptingToBid(b) ⇔
 existsReplyToProposeToAdoptBidding(c, b) ∧
 c.AcceptToAdoptBidding(b, s) ∧
 c.SendUtterance(s)

Definition of the operation
AcceptingToBid in the class
Contractor.

70 bob.AcceptingToBid(bid) ⇐
existsReplyToProposeToAdoptBidding(bob,bid) ∧
bob.AcceptToAdoptBidding(bid, reply) ∧
bob.SendUtterance(reply)

∀-Elimination (bob=c, bid=b,
reply=s) and ⇔-Elimination.
Step 69.

71 existsReplyToProposeToAdoptBidding(bob,bid) ∧
bob.AcceptToAdoptBidding(bid, reply) ∧
bob.SendUtterance(reply)

∧-Introduction. Steps 58, 59
and 68.

72 bob.AcceptingToBid(bid) Modus ponens. Steps 70 and
71.

73 bob.AcceptingToBid(bid) ∨
bob.RejectingToBid(bid)

∨-Introduction. Step 72.

The steps below show the same process as above but to derive that Bob rejects the

proposal.

123

Step Result Justification

74 (r1 ∈ reply.points ∧ a1 ∉ reply.points) Assumption (Bob rejects)

75 ∀ c:Contractor; b:Bidding; s:ToSpeak;
 r:↓Reject; a:Accept
 • c.RejectToAdoptBidding(b, s) ⇔
 s.speaker = b.bidder = c ∧
 s.addressee = b.manager ∧
 r.rejecting ∈ Add ∧
 r.rejecting.commitment =
 isCommitmentToBid(b) ∧
 r.rejecting = a.accepting ∧
 (r ∈ s.points ∧ a ∉ s.points)

Definition of the operation
RejectToAdoptBidding in the
class Contractor.

76 bob.RejectToAdoptBidding(bid, reply) ⇐
reply.speaker = bid.bidder = bob ∧
reply.addressee = bid.manager ∧
r1.rejecting ∈ Add ∧
r1.rejecting.commitment =
 isCommitmentToBid(bid) ∧
r1.rejecting = a1.accepting ∧
(r1 ∈ reply.points ∧ a1 ∉ reply.points)

∀-Elimination (bob=c, bid=b,
reply=s, r1=r, a1=a) and ⇔-
Elimination. Step 75.

77 r1.rejecting ∈ Add Equality. Steps 20 and 49.

78 r1.rejecting.commitment =
 isCommitmentToBid(bid)

Equality. Steps 21 and 49.

79 r1.rejecting = a1.accepting Equality. Step 66.

124

Step Result Justification

80 reply.speaker = bid.bidder = bob ∧
reply.addressee = bid.manager ∧
r1.rejecting ∈ Add ∧
r1.rejecting.commitment =
 isCommitmentToBid(bid) ∧
r1.rejecting = a1.accepting ∧
(r1 ∈ reply.points ∧ a1 ∉ reply.points)

∧-Introduction. Steps 56, 63,
74, 77, 78 and 79.

81 bob.RejectToAdoptBidding(bid, reply) Modus ponens. Steps 76 and
80.

82 ∀ c:Contractor; b:Bidding; s:ToSpeak
 • c.RejectingToBid(b) ⇔
 existsReplyToProposeToAdoptBidding(c, b) ∧
 c.RejectToAdoptBidding(b, s) ∧
 c.SendUtterance(s)

Definition of the operation
RejectingToBid in the class
Contractor.

83 bob.RejectingToBid(bid) ⇐
existsReplyToProposeToAdoptBidding(bob,bid) ∧
bob.RejectToAdoptBidding(bid, reply) ∧
bob.SendUtterance(reply)

∀-Elimination (bob=c, bid=b,
reply=s) and ⇔-Elimination.
Step 82.

84 existsReplyToProposeToAdoptBidding(bob,bid) ∧
bob.RejectToAdoptBidding(bid, reply) ∧
bob.SendUtterance(reply)

∧-Introduction. Steps 58, 59
and 81.

85 bob.RejectingToBid(bid) Modus ponens. Steps 83 and
84.

86 bob.AcceptingToBid(bid) ∨
bob.RejectingToBid(bid)

∨-Introduction. Step 85.

125

Lastly, the steps below join the findings from the assumptions in Steps 73 and 86, and

conclude by showing that these findings are the expected outcome of the proof.

Step Result Justification

87 bob.AcceptingToBid(bid) ∨
bob.RejectingToBid(bid)

∨-Enumeration, Steps 52, 60,
61-73, 74 and 75-86.

88 ∃ b:Bidding
• bob.AcceptingToBid(b) ∨
 bob.RejectingToBid(b)

∃-Introduction (bid=b). Step
87.

 QED

4.12 Summary

This chapter presented an example of how the model for conversations can be applied to

structure the conversations of agents interacting in a joint activity, in this case the Contract

Net Protocol. This example involved two agents: a manager (who requests bids and selects

the bid to be awarded for execution) and a contractor (who produces bids and executes

awarded contracts). This example also involved three joint actions: submitting bid (in

which the contractor produces and communicates a bid to the manager), evaluating bid (in

which the manager decides and communicates whether or not a bid is awarded for

execution), and executing contract (in which the contractor executes a contract and

communicates its results to the manager).

The dynamics of this model were illustrated through an example conversation that began

with a manager requesting a bid to a contractor. The contractor’s acceptance and later

submission of a bid followed this request. At which point, the manager accepted the bid for

evaluation, which led to its awarding as a contract. Lastly, the contractor accepted the

contract, executed it and submitted its results to the manager, thus ending the conversation.

In addition to the example, this chapter also presented a formal proof showing the logical

inference followed to structure conversations using the model for conversations.

126

To conclude, it is worthwhile to remark that the CNP is a high-level task allocation

mechanism that was designed with no specific domain of application in mind. In a certain

way, that the model for conversations can be applied to abstract protocols like this one

suggests the versatility that this model can offer to define interactions on concrete joint

activities. The next section explores in that direction and presents the definition of a

fictional (but quite feasible) e-commerce joint activity.

127

Chapter 5

Example: eBookstore Shopping

5.1 Overview

This chapter provides an example of how the model for conversations can be used to model

the interaction of agents in concrete, practical joint activities. Specifically, this example

models a scenario in which a buyer agent buys books from a seller agent, who then requests

the services of a carrier for delivering those books to the buyer.

This chapter begins with a section describing this scenario. Subsequent sections describe

the conversation elements used in interactions, that is, actions, social commitments,

illocutionary points and agent participations. Finally, this chapter concludes with an

example conversation where books are bought and delivered.

5.2 eBookstore Shopping

This example begins when a buyer agent approaches a seller agent in the fictitious Internet

bookstore eBookStore and requests that she sell him certain books (whose description he

provides). After making sure that the requested books can be sold (e.g., there are copies in

stock), the seller requests that the buyer pay for them. Once a payment has been produced,

the seller gives the buyer a proof of purchase (in the form of a receipt) and informs him that

128

a carrier will deliver the books he bought.40 After completing the sale, the seller contacts

the carrier agent and requests that he deliver the books.41 This request is followed by

another request in which the carrier asks the seller to provide a payment for the delivery.

Once a payment has been submitted, the carrier notifies the seller of his acceptance to

deliver.42 The interaction ends when the carrier contacts the buyer and delivers the books

he was given by the seller.43

5.2.1 Payable Actions

This specification defines two actions (selling and delivering) as payable actions.

A payable action is one that inherits from the class Action and the class Payable, which (as

shown below) specifies a payer agent and a payee agent.

Complementing this definition, the class PayableBy is specified as a subclass of Payable

that defines the time interval in which payment is to be proposed.

40 A person visiting a bookstore can expect to walk out of the store with the books he bought. Differently,
buying through an electronic medium limits the ability of the buyer to take immediate possession of items
(unless they are in digital format). In this example it is assumed that books are delivered through a carrier
agent—due to the incompatible natures of the medium of interaction and the books.
41 Strictly speaking, the interaction modelled in this chapter would have allowed that the seller contacts the
carrier to assure delivery as soon as the buyer requests a sale (although a cautious seller may wait to contact
the carrier until at least the books have been paid for). For simplicity, the seller in this conversation assumes
that the provision of deliveries is reliable (i.e., it follows the late commitment strategy).
42 Although in this example the actions of selling and delivering require a payment to be produced prior to
performance, that is not the case with all payable actions (i.e., actions that need to be paid). The restaurant
industry provides examples in which payment is requested both before and after performing the action of
serving meals. That is the case of fast-food outlets (in which payment is requested prior to serving a meal)
and sit-down diners (in which payment is asked after the meal has being served). It is worth noticing that the
principles described in this chapter can be applied without distinction to both cases.
43 This is a simple case of delivery, in which the carrier just hands out the parcel to the recipient. Other more
elaborate cases may require the receiver to provide a token (e.g., a signature, a photo id) that the carrier could
use to demonstrate proof of delivery.

129

5.2.2 Conversation Policies

The interesting part about payable actions is not their state (as described above) but their

behaviour. This behaviour (which is specified through conversation policies) specifies that

once a commitment referencing a payable action has been proposed, there exists an

obligation in which the payee will propose to the payer to pay for the execution of the

action (i.e., the payee will propose the adoption of a shared commitment in which the payer

performs the action of paying to the payee).

In the case of selling, for example, once the buyer has proposed to the seller that she sell

him an item (where selling is a payable action) then the seller has the obligation to propose

to the buyer that he pay for the sale.44

In general, an obligation in which a payee is to propose to a payer to pay for a payable

action can be discharged if:

a) The payer accepts to pay for the action (the buyer commits to pay the seller), or

b) The proposal to adopt the payable action is rejected (the seller rejects to sell)

The adoption and discharge of obligations to propose paying is modelled by the

conversation policies PayablePolicy1 and PayablePolicy2.

The class PayablePolicy1 (shown in Figure 29 and Figure 30) is a subclass of ActionNorm

which specifies that:

44 As a side thought, this behaviour is consistent with scenarios in which the seller is offering the sale of
items, as in the case of public markets, where sellers openly proclaim their products (and their prices) to
passing-by prospective shoppers. In such markets, competitive sellers could counterpropose their own
proposals for payment to attract buyers. Accordingly, these sellers could stop offering their products if buyers
reject buying them (in which case overzealous—if not annoying—sellers could propose to sell again), if
buyers accept one of the proposed prices, or if the sellers desist (e.g., by rejecting their own proposal to sell).

130

a) Proposing to adopt a payable action causes the adoption of an obligation to propose

paying, and

b) Rejecting a proposal to adopt a payable action causes the discharge of the obligation

to propose paying.

Figure 29. PayablePolicy1 (Policy 6): Adopting/discharging obligations to request a
payment based on the negotiation of a commitment to a payable action (part 1 of 2).

131

Lastly, the class PayablePolicy2 (shown in Figure 31) is an action norm that states that the

obligation to propose paying is discharged if a commitment to pay has been adopted.

To recap, the sections above specified data structures and policies supporting the general

modelling of payable actions. In contrast, the following sections will define the elements

specific to buying books at an eBookStore outlet.

5.3 Information

There are four types of information that are communicated in a shopping interaction:

books, payments, invoices and receipts.

The class BookDescription is a subclass of Data which specifies a title as a sequence of

characters (more specific definitions could also list ISBN, edition, publisher, and so on).

Instances of this class are used for describing books.

Figure 30. PayablePolicy1 (Policy 6): Adopting/discharging obligations to request a
payment based on the negotiation of a commitment to a payable action (part 2 of 2).

132

Figure 31. PayablePolicy2 (Policy 7): Discharging obligations to request a payment given
that a commitment to pay has been adopted.

133

The class Book inherits from BookDescription and specifies the contents of a book as a

sequence of characters (other book definitions could define figures and illustrations).

Payments involve the exchange of currency among interacting agents. As such, the class

Currency is the superclass of all monetary notes (such as cash and cheques). This class

defines all currencies to have a non-negative value.

Based on this definition, the classes eCash and eCredit specify more concrete (but still

elementary) types of currency (subclasses may define data such as a monetary body

backing the note (e.g., Bank of Canada, MasterCard) and other additional identifiers (e.g.,

serial number, expiration date)).

Currency is the instrument for making payments. As such, the class Payment is defined as

a data type that contains an instance of type Currency.

134

Transactions usually involve other pieces of information besides a payment: an invoice

(representing the terms of a sale), and a receipt (representing the proof of purchase). This

information is represented by the classes Invoice and Receipt, which in this example are

defined as subclasses of Data which specify the amount being charged (in the case of an

invoice) and the items bought (in the case of the receipt).

5.4 Actions

There are three actions involved in this example. These actions are:

• To sell: in which a seller sells items (e.g., books) to a buyer.

• To deliver: in which a carrier delivers a parcel (e.g., books) to a receiver, and

• To pay: in which a payer provides a payment to a payee (e.g., a buyer pays the seller

for books, the seller pays a delivery charge to the carrier).

5.4.1 Selling

Selling is a payable action in which a seller transfers the property of goods to a buyer. This

action is defined as a class named ToSell that inherits from ToProduce,

135

ToProposeToDischarge and Payable. As shown below, this action declares the variables

seller (as the producer, discharger and payee), buyer (as the receiver, discharged and

payer) and items (referring to the items involved in the sale). In addition, this definition

specifies that the data produced by the seller and communicated to the buyer is an instance

of type Receipt listing the items sold.

Based on this definition, the action Selling is defined as the union of the classes ToSell,

CompositeActing, ProposingToDischarge and PayableBy.

5.4.2 Delivering

Delivering is a payable action in which a carrier receives a parcel from a sender and hands

it out to a receiver. This action is defined as a class named ToDeliver that inherits from

ToProduce and Payable, and which specifies the variables sender (as the payer of the

action), carrier (as the producer and payee) and parcel (as the items that are transmitted to

the receiver). This class also specifies that the act of communicating the parcel is an

instance of type ToHandOutParcel (which is defined next) whose variable dispatcher is the

same as the sender of the delivery.

136

The class ToHandOutParcel is an action inheriting from ToSpeak and

ToProposeToDischarge that defines the variables dispatcher (which is the sender of the

delivery), carrier (which is the speaker and discharger), receiver (as the addressee and

discharged), and parcel (as the item being informed).45

Based on the above definitions, the actions Delivering and HandingOutParcel are defined

as:

45 This definition isolates the action of handing out a parcel from the action of delivering it (where the latter
subsumes the former). This allows the sender and the carrier to interact with the buyer while disclosing as
little information about the delivery as possible (such as account numbers, pick up sites, rebates, and so on)—
all of which might be described in a delivery instance.

137

5.4.3 Paying

Paying is an action in which a payer provides to a payee a payment covering the amount

specified in an invoice. This action is defined as a class named ToPay inheriting from

ToProduce and ToProposeDischarge that declares the variables payer (as the producer and

discharger), payee (as the receiver and discharged), payable (as the good or service for

which payment is requested), and invoice (which specifies the amount requested as

payment). This definition also specifies that the data produced by the payer and

communicated to the payee is an instance of type Payment whose value equals the amount

requested in the invoice.46

Based on this definition, the action Paying is defined as the union of the classes ToPay,

CompositeActing and ProposingToDischarge.

46 By defining the value of a payment as equal to the amount requested in an invoice, this specification
explicitly avoids the need for additional interactions to return change in cases where the value of a payment
exceeds the amount due. Although it would have been possible to model these additional interactions, they
were omitted for simplicity.

138

5.5 Social Commitments

There are four axioms that identify the social commitments involved in a shopping

interaction: they identify commitments to sell, commitments to pay, commitments to deliver,

and commitments to hand out a parcel.

5.5.1 Commitment to Sell

The axiom isCommitmentToSell is a function that returns a social commitment binding a

seller to sell items to a buyer. Specifically, this function receives a Selling action and

returns a social commitment that has as its creditor and debtor the buyer and seller of the

action, which is then specified as the action of the commitment.

5.5.2 Commitment to Pay

The axiom isCommitmentToPay is a function that returns a social commitment binding a

payer to produce a payment to a payee. Specifically, this function receives a Paying action

and returns a social commitment that has as its creditor and debtor the payee and payer of

the action, which is then specified as the action of the commitment.

139

5.5.3 Commitment to Deliver

Likewise, the axiom isCommitmentToDeliver is a function that returns a social commitment

binding a carrier to deliver a parcel for the sender. Specifically, this function receives a

Delivering action and returns a social commitment that has as its creditor and debtor the

sender and carrier of the action, which is then specified as the action of the commitment.

5.5.4 Commitment to Hand Out a Parcel

Lastly, the axiom isCommitmentToHandOutParcel is a function that returns a social

commitment binding a dispatcher (i.e., the sender of a delivery) and a carrier to hand out a

parcel for the sender. Specifically, this function receives a HandingOutParcel action and

returns a social commitment that has as its creditor and debtor the dispatcher and carrier of

the action, which is then specified as the action of the commitment.

140

The next section shows how these axioms support the definition of illocutionary points for

shopping interactions.

5.6 Illocutionary Points

This section defines the various illocutionary points used in shopping interactions. These

illocutionary points include proposals to sell books, acceptances to deliver a parcel, and

informing a payment, among others.

5.6.1 Proposing to Sell

Interactions for buying books begin when a prospective buyer requests a seller to sell the

books whose descriptions are provided. This communication is supported by the axiom

definitions isProposeToAdoptSelling and isInformBookDescriptions.

The axiom isProposeToAdoptSelling defines a function that receives a Selling action and an

interval within which a reply is expected, and returns a proposal to adopt a social

commitment to this selling action.

141

The axiom isInformBookDescriptions defines a function that receives a non-empty set of

instances of type BookDescription and returns an inform informing these descriptions.

5.6.2 Accepting to Sell

Once a request is issued, it is expected that it will be replied to with an acceptance or a

rejection. To support acceptances of this request, the axiom isAcceptToAdoptSelling

receives a Selling action and returns an acceptance to adopt committing to this action.

5.6.3 Proposing to End a Sale

Once a seller has agreed to sell books, she is responsible for producing and submitting a

proof of purchase to the buyer, indicating that such a sale has taken place. This implies that

the seller needs to provide a receipt, and propose to discharge the commitment in which she

is to sell the requested books. In addition, since the seller cannot hand out the books

directly to the buyer, she must inform the buyer that a carrier will be responsible for the

books’ delivery. This communication is modelled through the axioms

isProposeToDischargeSelling, isInformReceipt and isProposeToAdoptHandingOutParcel,

which specify the illocutionary points for proposing to discharge the commitment to sell,

for informing a receipt, and for proposing to adopt the commitment for handing out a parcel

(which is later specified as the books sold).

142

The axiom isProposeToDischargeSelling is a function that receives a Selling action and an

interval specifying an expected reply time, and returns a proposal to discharge a social

commitment to do the selling action.

The axiom isInformReceipt is a function that returns an Inform informing a receipt.

Lastly, the axiom isProposeToAdoptHandingOutParcel is a function that receives a

HandingOutParcel action and an interval specifying an expected time of reply, and returns

a proposal to adopt a social commitment to this handing out action.

5.6.4 Accepting to End a Sale

After a seller has proposed to a buyer to end the sale, it is expected that the buyer will reply

both to the proposal that the seller is no longer committed to sell the books, and to the

proposal that he adopt a commitment in which the carrier will deliver the books. These

143

acceptances are modelled through the axioms isAcceptToDischargeSelling and

isAcceptToAdoptHandingOutParcel, which specify the illocutionary points for accepting

the discharge of selling, and for accepting the adoption of being handed out a parcel,

respectively.

The axiom isAcceptToDischargeSelling is a function that receives a Selling action as input

and returns an acceptance to discharge a social commitment to this selling action.

Likewise, the axiom isAcceptToAdoptHandingOutParcel is a function that receives a

HandingOutParcel action as input and returns an acceptance to adopt a social commitment

to this handing out action.

5.6.5 Proposing to Deliver

After the sale has been completed, the seller will contact the carrier to request that he

delivers the books sold. To communicate this request, the seller sends a proposal to adopt

the commitment that the carrier delivers a set of books. This communication is supported

by the axioms isProposeToAdoptDelivering and isInformBooks, which specify the

illocutionary points for proposing to adopt the delivery of books, and for informing the

books that will be delivered, respectively.

144

The axiom isProposeToAdoptDelivery is a function that receives a Delivering action and an

interval specifying an expected reply time, and returns a proposal to adopt a social

commitment to do the delivery.

Lastly, the axiom isInformBooks is a function that receives a set of instances of type Book

and returns an inform informing these books.

5.6.6 Accepting to Deliver

After issuing the above request for delivery, it is expected that the carrier will accept to do

the delivery. To that end, the axiom isAcceptToAdoptDelivering defines a function that

returns an illocutionary point accepting to adopt a commitment to deliver a parcel.

145

5.6.7 Handing Out a Parcel

Once that the delivery of the books is accepted by the carrier, he is committed to hand out

the parcel to the receiver. This communication is supported by the axioms

isProposeToDischargeHandingOutParcel and (the previously described) isInformBooks.

The axiom isProposeToDischargeHandingOutParcel defines a function that receives a

HandingOutParcel action and an expected time of reply, and returns a proposal to

discharge the action of handing out a parcel.47

5.6.8 Proposing to Pay

Once an agent has proposed the adoption of a payable action, the payee of the action (if it

happens to be one of the interacting agents) adopts the obligation to propose to the payer to

commit paying for the payable action. The axioms isProposeToAdoptPaying and

isInformInvoice specify the illocutionary points for proposing to adopt a commitment to

pay, and for informing the amount that this payment must cover.

The axiom isProposeToAdoptPaying is a function that receives an instance of type Paying

and an interval indicating an expected time of reply, and returns a proposal to adopt the

specified paying action.

47 It is worth commenting that this example models the interaction between the carrier and the receiver based
on the discharge of the action in which the carrier hands out a parcel to the receiver, that is, without any
preceding interaction between them to adopt it. As it is explained later in this chapter, this specification
effectively minimizes the interactions between the carrier and receiver and allows both to communicate the
parcel being delivered, and to discharge the obligations in which the parcel is delivered.

146

The axiom isInformInvoice is a function that informs a given invoice.

5.6.9 Accepting to Pay

After the proposal to adopt a paying action has been issued, one could expect that this

proposal is accepted. This acceptance is modelled by the axiom isAcceptToAdoptPaying,

which specifies a function that takes a Paying action as input and returns an illocutionary

point accepting to adopt a commitment to pay.

5.6.10 Submitting a Payment

Accepting a commitment to pay makes the payer responsible for paying to the payee. To

that end, the axioms isInformPayment and isProposeToDischargePaying define the

illocutionary points for submitting a payment, and for proposing to discharge a

commitment to pay, respectively.

147

The axiom isProposeToDischargePaying is a function that receives an instance of type

Paying and interval indicating an expected time of reply, and returns a proposal to

discharge a commitment to pay.

The axiom isInformPayment is a function that informs a given payment.

5.6.11 Accepting Payment

Lastly, once a payment is produced, it is expected that the payment will be accepted by

accepting the proposal to discharge the commitment to pay. This acceptance is specified by

the axiom isAcceptToDischargePaying, which is a function that takes as input an instance

of type Paying, and returns an acceptance to discharge the paying action.

After introducing in this section various illocutionary point definitions, the next section will

show how agents participating in the shopping conversations use these definitions.

148

5.7 Participants

This example involves three types of participants: a buyer, a seller and a carrier.

Subsections below describe the communicational participations of these agents based on

the illocutionary points described above.

5.7.1 Buyer

The class Buyer (which is shown in Figure 32 and Figure 33) is a subclass of Agent that

defines operations for requesting to buy books, for paying books, for receiving a proof of

purchase and for accepting the delivery of books.

Requesting to Buy Books

The operation RequestingToBuyBooks defines the behaviour for requesting the sale of

books. This operation is defined as the sequential composition of the operations

ProposeToAdoptSellingBooks (which is described below) and SendUtterance (which was

described earlier as an operation that communicates a speech act from a speaker to an

addressee).

The operation ProposeToAdoptSellingBooks produces a speech act where the speaker and

the addressee are the buyer (who is also the current buyer instance) and seller of the

provided selling action. In addition, the resulting speech act contains a proposal to adopt

selling and an inform indicating the books requested for the sale.

Accepting to Pay Books

The operation AcceptingToPayBooks defines the behaviour for accepting to pay for the sale

of books. This operation receives a Paying action for adoption and evaluates whether or

not the buyer (i.e., the current instance) holds obligations to reply to a proposal to adopt the

Paying action (as specified by the axiom existsReplyToProposeToAdoptPaying, which is

defined next). The fulfilment of this condition leads to the operations

AcceptToAdoptPayingBooks (which define a speech act accepting to adopt paying) and

SendUtterance.

149

Figure 32. Definition of the class Buyer (part 1 of 2).

150

The axiom existsReplyToProposeToAdoptPaying (shown below) assesses whether or not a

provided set of obligations contains a Speaking action in which the payer is able to reply

now to a proposal to adopt a given Paying action.

Submitting Books Payment

The operation SubmittingBooksPayment defines the behaviour for producing a payment for

the books being bought. This operation receives a Paying action for discharge and

evaluates whether or not the buyer holds obligations to propose discharging the Paying

action (as specified by the axiom existsSpeakToProposeToDischargePaying, which is

defined next). This condition leads to the sequential composition of the operations

ProposeToDischargePayingBooks (which defines a speech act proposing to discharge a

paying action, and informing a payment) and SendUtterance.

The axiom existsSpeakToProposeToDischargePaying assesses whether or not a provided

set of obligations contains a Speaking action in which the payer is able to propose now the

discharge of a given Paying action.

151

Figure 33. Definition of the class Buyer (part 2 of 2).

152

Paying Books

In some contexts, the uttering of two separate speech acts for accepting to pay and for

producing a payment may be neither adequate nor practical. In such cases both the

acceptance to pay and a payment could be communicated in a single utterance.

This is modelled by the operation PayingBooks. This operation evaluates whether or not

the buyer holds an obligation to reply to a proposal to adopt paying (as indicated by the

previously defined axiom existsReplyToProposeToAdoptPaying), which leads to the

operations AcceptToAdoptPayingBooks and ProposeToDischargePayingBooks (also

described earlier), which specify an acceptance to pay and the production of payment,

respectively.

Accepting to End Sale

The operation AcceptingToEndSale specifies the behaviour for accepting to discharge a

commitment to sell, and for accepting to adopt a commitment in which a carrier hands out a

parcel of books. This operation receives a Selling action for discharge and a

HandingOutParcel action for adoption, and evaluates whether or not these actions specify

the same agent as their seller and sender, and the same data as the items being sold and

delivered, respectively. This operation also evaluates whether or not the buyer holds an

153

bligation to reply to a proposal to discharge the Selling action, and an obligation to propose

the adoption of the HandingOutParcel action (as specified by the axioms existsReplyTo-

ProposeToDischargeSelling and existsReplyToProposeToAdoptHandingOutParcel, which

are defined next). The fulfilment of these conditions leads to the operations

AcceptToDischargeSellingBooks and AcceptToAdoptNoticeOfDelivery (which define

speech acts for accepting to discharge selling books, and for accepting to adopt a

commitment in which the carrier hands out to the buyer the books he bought) followed by

the operation SendUtterance.

The axiom existsReplyToProposeToDischargeSelling assesses whether or not a provided

set of obligations contains a Speaking action in which the buyer is able to reply now to a

proposal to discharge a Selling action.

Likewise, the axiom existsReplyToProposeToAdoptHandingOutParcel (shown below)

assesses whether or not a provided set of obligations contains a Speaking action in which

the buyer is able to reply now to a proposal to adopt a HandingOutParcel action.

154

Accepting to Receive Books

Lastly, the operation AcceptingToReceiveBooks defines the behaviour for accepting to

come into possession of the books delivered by the carrier. This operation receives a

HandingOutParcel action for discharge, and evaluates whether or not the buyer holds an

obligation to reply to a proposal to discharge the HandingOutParcel action (as specified by

the axiom existsReplyToProposeToDischargeHandingOutParcel, which is defined next).

The fulfilment of this condition then leads to the operations

AcceptToDischargeHandingOutParcel (which defines a speech act accepting to discharge

the handing out of a parcel) and SendUtterance.

The axiom existsReplyToProposeToDischargeHandingOutParcel (shown below) is a

function that assesses whether or not a provided set of obligations contains a Speaking

action in which the buyer is able to reply now to a proposal to discharge a

HandingOutParcel action.

155

The next section describes the second (of the three) agents involved in the eBookstore

interactions: the seller agent.

5.7.2 Seller

Sellers are those agents that sell books to buyers and who request the delivery of these

books to carrier agents.

The class Seller (which is shown in Figure 34, Figure 35 and Figure 36) is a class inheriting

from Agent which defines operations for accepting to sell books, requesting to pay books,

accepting books payment, proposing to end a sale, requesting the delivery of books, and

accepting to pay their delivery.

Accepting to Sell Books

The operation AcceptingToSellBooks specifies the behaviour for accepting a proposal to

adopt a commitment to sell books. This operation receives a Selling action for adoption

and evaluates whether or not the seller (i.e., the current instance) holds an obligation to

reply to a proposal to adopt the action (as specified by the axiom

existsReplyToProposeToAdoptSelling, which is defined next). The fulfilment of this

156

condition leads to the operations AcceptToAdoptSellingBooks (which defines a speech act

accepting to sell books) and SendUtterance.

The axiom existsReplyToProposeToAdoptSelling is a function that assesses whether or not

a provided set of obligations contains a Speaking action in which the bidder is able to reply

now to a proposal to adopt a given Selling action.

Requesting Books Payment

The operation RequestingBooksPayment specifies the behaviour of a seller when proposing

that she is paid for selling a set of requested books. This operation receives a Paying action

and evaluates whether or not the seller holds an obligation to propose to the buyer its

adoption (as specified by the axiom existsSpeakToProposeToAdoptPaying, which is

defined next). The fulfilment of this condition leads to the operations

ProposeToAdoptPayingBooks (which defines a speech act proposing to pay for the books

requested) and SendUtterance.

157

Figure 34. Definition of the class Seller (part 1 of 3).

158

The axiom existsSpeakToProposeToAdoptPaying is a function that assesses whether or not

a provided set of obligations contains a Speaking action in which the seller is able to

propose now to discharge a given Paying action.

Accepting Books Payment

The operation AcceptingBooksPayment specifies the behaviour for accepting to discharge a

commitment to pay. This operation receives a Paying action for discharge, and evaluates

whether or not the seller holds an obligation to reply to a proposal to discharge paying the

books (as specified by the axiom existsReplyToProposeToDischargePaying, which is

defined next). The fulfilment of this condition leads to the operations

AcceptToDischargePayingBooks (which defines a speech act accepting the discharge of

paying the books) and SendUtterance.

The axiom existsReplyToProposeToDischargePaying is a function that assesses whether or

not a provided set of obligations contains a Speaking action in which the seller can propose

the discharge of a given Paying action.

159

Figure 35. Definition of the class Seller (part 2 of 3).

160

Proposing to End Sale

The operation ProposingToEndSale specifies the behaviour for finalizing books’ sales. This

operation receives a Selling action and a HandingOutParcel action, and evaluates

a) whether or not these actions specify the same agent as the buyer of books and the

receiver of the parcel (respectively),

b) whether or not the books bought are the same as those delivered in the parcel, and

c) whether or not the seller holds an obligation to propose discharging the Selling

action (as specified by the axiom existsSpeakToProposeToDischargeSelling, which

is defined next).

The fulfilment of these conditions leads to the conjunctive composition of the operations

ProposeToDischargeSellingBooks and ProposeToAdoptNoticeOfDelivery (which define

speech acts for proposing to discharge selling books, and for proposing to adopt a

commitment in which the carrier hands out the books to the buyer) followed by the

operation SendUtterance.

161

Figure 36. Definition of the class Seller (part 3 of 3).

162

The axiom existsSpeakToProposeToDischargeSelling assesses whether or not a provided

set of obligations contains a Speaking action in which the seller can propose now to

discharge a given Selling action.

Proposing to End Transaction

The operation ProposingToEndTransaction specifies in one operation (thus one

communication) the acceptance of a payment and the end of a sale (behaviours that were

defined separately in the two previous sections by the operations AcceptingBooksPayment

and ProposingToEndSale).

As shown in Figure 36, this operation evaluates whether or not the given Paying, Selling

and HandingOutParcel actions have the same agent as their payer, buyer and receiver

(respectively), whether or not the books being sold are the same as those in the parcel to be

delivered, and whether or not the seller holds an obligation in which she replies to a

proposal to discharge paying, and an obligation in which she proposes to discharge the

selling of books (as indicated by the previously defined axioms

existsReplyToProposeToDischargePaying and existsSpeakToProposeToDischargeSelling).

The fulfilment of these conditions leads to the conjunctive composition of the operations

AcceptToDischargePayingBooks, ProposeToDischargeSellingBooks and

163

ProposeToAdoptNoticeOfDelivery (which were also described earlier) followed by the

operation SendUtterance.

Requesting to Deliver Books

The operation RequestingToDeliverBooks specifies the behaviour for requesting to a carrier

the delivery of books. This operation defines the sequential composition of the operations

ProposeToAdoptDelivery (which defines a speech act for proposing to adopt a commitment

to deliver a set of books) and SendUtterance.

Accepting to Pay Delivery

Since the action Delivering is a subclass of Payable, then proposing to adopt this action

enables the carrier to propose a payment. The operation AcceptingToPayDelivery defines

the behaviour for accepting to pay for a delivery. This operation receives a Paying action

for adoption, and evaluates whether or not the seller holds an obligation to reply to a

proposal to adopt paying (as specified by the previously defined axiom

existsReplyToProposeToAdoptPaying). The fulfilment of this condition leads to the

operations AcceptToAdoptPayingDelivery (which defines a speech act accepting to pay for

the delivery of books) and SendUtterance.

Submitting Delivery Payment

The operation SubmittingDeliveryPayment specifies the behaviour for submitting a

payment for the delivery of books. This operation receives a Paying action for discharge,

and evaluates whether or not the seller holds an obligation to propose the discharge of a

commitment to pay the delivery of books (as specified by the previously defined axiom

existsSpeakToProposeToDischargePaying). The fulfilment of this condition leads to the

operations ProposeToDischargePayingDelivery (which defines a speech act proposing to

discharge paying for the delivery) and SendUtterance.

164

Paying Delivery

Lastly, the operation PayingDelivery specifies in one operation the behaviours for

accepting to pay and producing a payment for the delivery (as indicated by the previously

defined operations AcceptingToPayDelivery and SubmittingDeliveryPayment).

As shown, this operation evaluates whether or not the seller holds an obligation to reply to

a proposal to pay for the requested delivery of books (as specified by the previously defined

axiom existsReplyToProposeToAdoptPaying), which leads to the operations

AcceptToAdoptPayingDelivery and ProposeToDischargePayingDelivery (which were also

described earlier), followed by the operation SendUtterance.

To recap, this section described the behaviour of seller agents. The next section describes

the operations making the behaviour of the last type of agent in the eBookstore scenario:

that of carrier agents.

5.7.3 Carrier

Carrier agents are those that perform deliveries between the seller and the buyer.

The class Carrier (which is shown in Figure 37 and Figure 38) is a subclass of Agent that

defines operations for requesting and accepting delivery payments, for accepting to do

deliveries and for handing out a parcel delivered. These operations (along with other

private operations that support them) are described in the subsections below.

Requesting a Delivery Payment

The operation RequestingDeliveryPayment defines the behaviour for requesting the

payment of a delivery. This operation evaluates whether or not the carrier (i.e., the current

instance) holds obligations to propose to the seller that she pay for a delivery (as specified

by the previously defined axiom existsSpeakToProposeToAdoptPaying), which leads to the

operations ProposeToAdoptPayingDelivery (which defines a speech act proposing the

adoption of a commitment in which the seller pays a delivery) and SendUtterance.

165

Figure 37. Definition of the class Carrier (part 1 of 2).

166

Accepting a Delivery Payment

The operation AcceptingDeliveryPayment defines the behaviour for accepting a submitted

payment. This operation evaluates whether or not the carrier holds obligations for replying

to a proposal to discharge paying (as specified by the previously defined axiom

existsReplyToProposeToDischargePaying), which leads to the operations

AcceptToDischargePayingDelivery (which defines a speech act accepting to discharge the

commitment to pay a delivery) and SendUtterance.

Accepting to Deliver

The operation AcceptingToDeliverBooks defines the behaviour for accepting to deliver a

parcel of books. This operation evaluates whether or not the carrier holds obligations to

reply to a proposal to adopt committing to make a delivery (as specified by the axiom

Figure 38. Definition of the class Carrier (part 2 of 2).

167

existsReplyToProposeToAdoptDelivering, which is defined next), which leads to the

operations AcceptToAdoptDelivering (which defines a speech act accepting to deliver) and

SendUtterance.

The axiom existsReplyToProposeToAdoptDelivering is a function that assesses whether or

not a provided set of obligations contains a Speaking action in which the carrier is able to

reply now to a proposal to adopt a given Delivering action.

Accepting Books Delivery

The operation AcceptingBooksDelivery defines the behaviour for accepting a payment and

accepting to deliver, thus combining the behaviour previously specified by the operations

AcceptingDeliveryPayment and AcceptingToDeliverBooks.

This operation receives a Paying action for discharge and a Delivering action for adoption,

and evaluates whether or not these actions specify the same agent as their payer and sender

(respectively), and whether or not the carrier holds obligations to reply to a proposal to

discharge paying, and a proposal to deliver (as specified by the previously defined axioms

existsReplyToProposeToDischargePaying and existsReplyToProposeToAdoptDelivering).

The fulfilment of these conditions leads to the operations AcceptToDischarge-

168

PayingDelivery and AcceptToAdoptDelivering (which were also defined earlier) followed

by the operation SendUtterance.

Handing Out a Delivery

Lastly, the operation RequestingToReceiveBooks indicates the behaviour followed by the

carrier for handing out the parcel to the buyer. This operation receives a

HandingOutParcel action for discharge, and evaluates whether or not the carrier holds an

obligation to propose the discharge of the action (as specified by the axiom

existsSpeakToProposeToDischargeHandingOutParcel, which is defined next), which leads

to the operations ProposeToDischargeHandingOutParcel (which defines a speech act

proposing to hand out books) and SendUtterance.

The axiom existsSpeakToProposeToDischargeHandingOutParcel is a function that

assesses whether or not a provided set of obligations contains a Speaking action in which

the carrier is able to propose now to discharge a given HandingOutParcel action.

To summarize, the above sections presented the communicational behaviour of buyers,

seller and carriers (behaviour that they can follow as long as their committal preconditions

are met). Nevertheless, these operations are disembodied of any concrete interaction. The

169

next section will show how these operations are assembled into coherent interactions that

follow the principles of the model for conversations.

5.8 eShopping as a Joint Activity

The class eBooksShopping (which is shown in Figure 39) is a subclass of JointActivity

which specifies the interactions that can occur when shopping for books at eBookStore.

This class specifies three participants (a buyer, a seller and a carrier) and four actions in

which they participate (selling, delivering, paying books and paying delivery). This class

also specifies that the books involved in the selling action are equal to those in the

delivering action.

5.8.1 Interactions

The operation Interaction defines the sequences of interdependent agent operations making

the activity. This operation (which is illustrated as a Petri Net in Figure 40) specifies that a

request from a buyer to buy books be followed by an acceptance from the seller. Given this

acceptance, the specification defines the concurrent execution of two interactions: one for

continuing the sale transaction (between the buyer and the seller), and another one for

arranging the delivery of books (between the seller and the carrier).

On the one hand, the interaction between the buyer and the seller continues with a

communication in which the seller requests to the buyer to provide a payment for the books

requested. As specified, this request could be followed by the acceptance to pay and the

submission of payment—either as separate communications or in a single utterance. These

acceptance to pay and payment communications are followed by the seller’s acceptance of

the payment and the remission of a receipt (which, as earlier, could be done through one or

two utterances).

170

Figure 39. Definition of the joint activity eBookStoreShopping.

171

On the other hand, the interaction between the seller and the carrier begins with a request to

deliver books from seller to carrier. This is followed by a communication from the carrier

in which he requests the seller to pay for the delivery. The seller replies to this request with

an acceptance to pay and the submission of a payment (which could be carried out in one or

two utterances), which is followed by the carrier’s acknowledgement of the payment and

his acceptance to deliver the books.

Once these concurrent interactions have ended, the conversation continues with a

communication from the carrier to the buyer in which he (the carrier) hands out to the buyer

the books he received from the seller for delivery. The interaction ends with an

acknowledgement from the buyer in which he accepts the books delivered.

5.9 eBookStore Society

The class eBookStoreSociety is specified as a subclass of PFPsociety that defines the

policies for payable actions as norms in the society, and also that eBookStoreShopping is a

joint activity in the society.

5.10 Example Conversation: Buying Books

Figure 41 shows a UML interaction diagram for a conversation in the eBooksShopping

activity. The conversation begins when a buyer requests to a seller to buy books, and

advances until a carrier delivers the books to the buyer.

172

This conversation is specified in the Interaction schema by the sequence of the operations

RequestingToBuyBooks, AcceptingToSellBooks, RequestingBooksPayment, PayingBooks,

Figure 40. Petri net diagram with the interactions in the joint activity eBooksShopping.

173

ProposingToEndTransaction and AcceptingToEndSale (which are the interactions between

the buyer and the seller); RequestingToDeliverBooks, RequestingDeliveryPayment,

PayingDelivery and AcceptingBooksDelivery (which are the interactions between the seller

and the carrier); and, RequestingToReceiveBooks and AcceptingToReceiveBooks (which are

the interactions between the carrier and the buyer).

The state of shared social commitments and obligations of the buyer in this example is

shown in Figure 42 and Figure 43. The state changes with each interaction. Likewise,

Figure 44, Figure 45 and Figure 46 show the state of the seller, and Figure 47 and Figure 48

show the state of the carrier.

5.10.1 Requesting to Buy Books

As shown in Figure 41, the interaction begins with an utterance from the buyer (identified

as b) to the seller (identified as s) in which he requests that she sell him the books identified

by the titles he is providing.

As specified in b’s operation RequestingToBuyBooks, this speech act contains a Propose

illocutionary point (labelled α), proposing the adoption of a shared commitment in which s

is responsible to b for an action Selling in which s performs and informs the results of the

action to b. The uttering of this proposal triggers the following policies:

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal α results in the adoption of obligations in which s replies to

b’s proposal α (added as obligations 1 and 2 on both the buyer (Figure 42) and the

seller (Figure 44)).

• Policy 6 (proposing a payable action commits the payee to request a payment): the

uttering of proposal α (which contains the payable action Selling) results in the

adoption of obligations in which s (the payee) is to propose to b (the payer) to pay

for the sale. These obligations are added as obligations 3 and 4 on both the buyer

and the seller.

174

Figure 41. UML interaction diagram for an eBooksShopping conversation.

175

5.10.2 Accepting to Sell Books

The next interaction (labelled as interaction 2 in Figure 41) specifies the execution of s’s

operation AcceptingToSellBooks, in which she accepts committing to sell the requested

books. This acceptance is uttered if obligations exist in which s replies to a proposal to sell

books (which exist as obligations 1 and 2). This acceptance results in the application of the

following policies:

• Policy 2 (replying to a proposal discharges the obligation to reply): the acceptance

to uptake the operation proposed in α discharges the obligation to reply to α (which

deletes obligations 1 and 2 on both the buyer (Figure 42) and the seller (Figure 44)).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in α causes the adoption of the

proposed commitment, in this case to sell books (added as commitment A in Figure

42 and Figure 44). In addition, this acceptance results in the adoption of obligations

to perform the joint action. As such, the seller adopts obligations to produce and

communicate the books (obligations 5 to 8), and the buyer adopts obligations to

receive them (obligations 5 to 7).

• Policy 4 (accepting a ProposingToDischarge action obligates the discharger to

propose its discharge): the acceptance to adopt the action Selling (which is a

subtype of ProposingToDischarge) results in the adoption of obligations in which s

(the discharger) is to propose to b (the discharged) discharging the action. These

obligations are added as obligations 8 and 9 on the buyer, and 9 and 10 on the seller.

5.10.3 Requesting to Pay Books

The next interaction (labelled as interaction 3 in Figure 41) specifies the execution of s’s

operation RequestingBooksPayment, in which she proposes that b pays for the books (only

if there is an obligation to request a payment—which exists as obligations 3 and 4). The

uttering of this proposal (labelled β) triggers the following policy:

176

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal β results in the adoption of obligations in which b replies to

β (added as obligations 10 and 11 on the buyer, and 11 and 12 on the seller).

Figure 42. State of shared social commitments and obligations of the buyer in the
eBooksShopping conversation example (part 1 of 2).

177

5.10.4 Paying Books

The next interaction (labelled as interaction 4 in Figure 41) specifies the execution of b’s

operation PayingBooks, in which a) he accepts to pay the books, b) he proposes to

Figure 43. State of shared social commitments and obligations of the buyer in the
eBooksShopping conversation example (part 2 of 2).

178

discharge paying the books (a proposal that is labelled γ) and c) he informs a payment. The

committal precondition for this utterance is an obligation in which b replies to a request for

payment from c (which exists as obligations 10 and 11). The uttering of this speech act

results in the following conversation policies:

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal γ results in the adoption of obligations in which s replies to

γ (added as obligations 12 and 13 on the buyer, and 13 and 14 on the seller).

• Policy 2 (replying to a proposal discharges the obligations to reply): the acceptance

to uptake the operation proposed in β discharges the obligations to reply to β (thus

deleting obligations 10 and 11 on the buyer, and 11 and 12 on the seller).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in β causes the adoption of the

commitment to pay (labelled as commitment B in Figure 42 and Figure 44), as well

as its corresponding obligations (which are obligations 14 to 17 on the buyer, and

15 to 17 on the seller).

• Policy 4 (accepting to adopt a ProposingToDischarge action obligates the

discharger of the action to propose its discharge): the acceptance to adopt the action

to pay the books results in the adoption of obligations in which b (the discharger) is

to propose s (the discharged) to discharge this action (which adds obligations 18

and 19 on both the buyer and the seller).

• Policy 7 (adopting a commitment to pay discharges the commitment to request a

payment): the acceptance to commit to paying the books results in the discharge of

obligations in which s (the payee) is to propose to b (the payer) to pay for the books

(which deletes obligations 3 and 4 on both the buyer and the seller).

179

5.10.5 Proposing to End Sale

The next interaction (labelled as interaction 5 in Figure 41) specifies the execution of s’s

operation ProposingToEndTransaction, in which a) she accepts to discharge the

Figure 44. State of shared social commitments and obligations of the seller in the
eBooksShopping conversation example (part 1 of 3).

180

commitment to be paid (which she does if there is an obligation to reply to a proposal to

discharge paying—which exists as obligations 13 and 14); b) she proposes to discharge

selling the books (labelled as δ) (only if there is an obligation to propose its discharge—

which exists as obligations 18 and 19); c) she informs a receipt; and d) she proposes to

adopt a commitment in which the carrier hands out the books to the buyer (which is

labelled as ε). The uttering of this speech act triggers the following conversational policies:

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal ε results in the adoption of obligations in which b replies to

ε (added as obligations 20 and 21 on both the buyer (Figure 43) and the seller

(Figure 45)).

Figure 45. State of shared social commitments and obligations of the seller in the
eBooksShopping conversation example (part 2 of 3).

181

• Policy 1 (ditto): the uttering of proposal δ results in the adoption of obligations in

which b replies to δ (added as obligations 22 and 23 on both the buyer and the

seller).

Figure 46. State of shared social commitments and obligations of the seller in the
eBooksShopping conversation example (part 3 of 3).

182

• Policy 2 (replying to a proposal discharges the obligations to reply): the acceptance

to uptake the operation proposed in γ discharges the obligations to reply to γ (thus

deleting obligations 12 and 13 on the buyer, and 13 and 14 on the seller).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in γ causes the discharge of the

commitment to pay (labelled as commitment B in Figure 43 and Figure 45) and all

corresponding obligations (which are obligations 14 to 17 on the buyer, and 15 to

17 on the seller), and lastly

• Policy 4 (accepting to discharge a ProposingToDischarge action discards the

obligations in which the discharger of the action is to propose its discharge): the

acceptance to discharge the commitment to pay results in the discharge of the

obligations in which b is to propose discharging the commitment that he pays the

books (which deletes obligations 18 and 19 on both the buyer and the seller).

5.10.6 Accepting to End Sale

The last interaction between the buyer and the seller (labelled as interaction 6 in Figure 41)

specifies the execution of b’s operation AcceptingToEndSale, in which b accepts both the

discharge of the commitment that s sells the books to b, and the adoption of the

commitment that c (the carrier) will deliver the books to b. The committal preconditions

for this utterance are that there exist obligations to reply to a proposal to discharge selling

(which exist as obligations 22 and 23), and obligations to reply to a proposal to adopt the

delivery (which exist as obligations 20 and 21). The uttering of these acceptances results in

the application of the following policies:

• Policy 2 (replying to a proposal discharges the obligations to reply): the acceptance

to uptake the operation proposed in ε discharges the obligations to reply to ε (thus

deleting obligations 20 and 21 on both the buyer and the seller).

183

• Policy 2 (ditto): the acceptance to uptake the operation proposed in δ discharges the

obligations to reply to δ (thus deleting obligations 22 and 23 on both the buyer and

the seller).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in ε causes the adoption of the

commitment to hand out the books (labelled as commitment C in Figure 43 and

Figure 45) as well as its corresponding obligations (which are obligations 24 and 25

on the buyer, and none on the seller).

• Policy 3 (ditto): the acceptance to uptake the operation proposed in δ causes the

discharge of the commitment to pay the books (labelled as commitment A) and all

corresponding obligations (which are obligations 5 to 7 on the buyer, and 5 to 8 on

the seller).

5.10.7 Requesting to Deliver Books

The request for delivery is the first interaction between the seller and the carrier (who is

identified as c). This interaction (labelled as interaction 7 in Figure 41) specifies the

execution of s’s operation RequestingToDeliverBooks, in which s proposes to c to commit

to deliver a given set of books. The uttering of this proposal (labelled ζ) triggers the

following conversation policies:

• Policy 1 (the uttering of a proposal obligates the addressee to reply to the proposal):

the uttering of proposal ζ results in the obligations in which c replies to ζ (which

adds obligations 24 and 25 on the seller (Figure 46), and 1 and 2 on the carrier

(Figure 47)).

• Policy 6 (proposing a payable action commits the payee to request a payment): the

uttering of proposal ζ (which contains the payable action Delivering) results in the

adoption of obligations in which c (the payee) is to propose to s (the payer) to pay

for the delivery. These obligations are added as obligations 26 and 27 on the seller

and 3 and 4 on the carrier.

184

5.10.8 Requesting to Pay Delivery

The next interaction (labelled as interaction 8 in Figure 41) specifies the execution of c’s

operation RequestingDeliveryPayment, in which c proposes to s the adoption of the

commitment that she pay for the delivery. This proposal is uttered if there are obligations

Figure 47. State of shared social commitments and obligations of the carrier in the
eBooksShopping conversation example (part 1 of 2).

185

in which c requests a payment (which exist as obligations 3 and 4). The uttering of this

proposal (labelled η) triggers the following conversational policy:

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal η results in the adoption of obligations in which s replies to

η (added as obligations 28 and 29 on the seller, and 5 and 6 on the carrier).

5.10.9 Paying Delivery

The next interaction (labelled as interaction 9 in Figure 41) specifies the execution of s’s

operation PayingDelivery, in which a) she accepts to pay the delivery, b) she proposes to

discharge paying the delivery (a proposal that is labelled θ) and c) she informs a payment.

The committal precondition for this utterance is an obligation in which s replies to a request

for payment from c (which exists as obligations 26 and 27). The uttering of this speech act

results in the following conversation policies:

• Policy 1 (the uttering of a proposal commits the addressee to reply to the proposal):

the uttering of proposal θ results in the adoption of obligations in which c replies to

θ (added as obligations 30 and 31 on the seller, and 7 and 8 on the carrier).

Figure 48. State of shared social commitments and obligations of the carrier in the
eBooksShopping conversation example (part 2 of 2).

186

• Policy 2 (replying to a proposal discharges the obligations to reply): the acceptance

to uptake the operation proposed in η discharges the obligations to reply to η (thus

deleting obligations 28 and 29 on the seller, and 5 and 6 on the carrier).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in η causes the adoption of the

commitment to pay (labelled as commitment D in Figure 46 and Figure 47) as well

as its corresponding obligations (which are obligations 32 to 35 on the seller, and 9

to 11 on the carrier).

• Policy 4 (accepting to adopt a ProposingToDischarge action obligates the

discharger of the action to propose its discharge): the acceptance to adopt the action

to pay the delivery results in the adoption of obligations in which s (the discharger)

is to propose to c (the discharged) to discharge this action (which adds obligations

36 and 37 on the seller, and 12 and 13 on the carrier), and lastly

• Policy 7 (adopting a commitment to pay discharges the commitment to request a

payment): the acceptance to commit to paying the delivery of the books results in

the discharge of obligations in which c (the payee) is to propose to s (the payer) to

pay for this delivery (which deletes obligations 26 and 27 on the seller, and 3 and 4

on the carrier).

5.10.10 Accepting Books Delivery

The last interaction between the seller and the carrier (labelled as interaction 10 in Figure

41) specifies the execution of c’s operation AcceptingBooksDelivery, in which he accepts

both the discharge of the commitment that s pays for the delivery, and the adoption of the

commitment that he delivers the books. The committal preconditions for this utterance are

that there exist obligations to reply to a proposal to discharge paying the delivery (which

exist as obligations 7 and 8) and to reply to a proposal to adopt the delivery (which exist as

obligations 1 and 2). The uttering of these acceptances results in the application of the

following policies:

187

• Policy 2 (replying to a proposal discharges the obligations to reply): the acceptance

to uptake the operation proposed in θ discharges the obligations to reply to θ (thus

deleting obligations 30 and 31 on the seller, and 7 and 8 on the carrier).

• Policy 2 (ditto): the acceptance to uptake the operation proposed in ζ discharges the

obligations to reply to ζ (thus deleting obligations 24 and 25 on the seller, and 1 and

2 on the carrier).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in ζ causes the adoption of the

commitment to deliver the books (labelled as commitment E) as well as its

corresponding obligations (which are obligations 14 to 17 on the carrier, and none

on the seller).

• Policy 3 (ditto): the acceptance to uptake the operation proposed in θ causes the

discharge of the commitment to pay (labelled as commitment D) and all

corresponding obligations (which are obligations 32 to 35 on the seller, and 9 to 11

on the carrier).

• Policy 4 (accepting to discharge a ProposingToDischarge action discards the

obligations in which the discharger of the action is to propose its discharge): the

acceptance to discharge the commitment to pay the delivery results in the discharge

of the obligations in which s is to propose discharging the commitment that she

pays the delivery (which deletes obligations 36 and 37 on the seller, and 12 and 13

on the carrier), and lastly

• Policy 4 (accepting to adopt a ProposingToDischarge action obligates the

discharger of the action to propose its discharge): the acceptance to adopt the action

to hand out the delivered books results in the adoption of obligations in which c (the

discharger) is to propose b (the discharged) to discharge this action (which adds

obligations 18 and 19 on the carrier, and none on the seller).

188

5.10.11 Requesting to Receive Books

The carrier interacts with the buyer to deliver the books sold by the seller. This interaction

(labelled as interaction 11 in Figure 41) specifies the execution of c’s operation

RequestingToReceiveBooks, in which c proposes to b to discharge the commitment that he

hand out the books to b. The uttering of this proposal (labelled ι) triggers the following

conversation policy:

• Policy 1 (the uttering of a proposal obligates the addressee to reply to the proposal):

the uttering of proposal ι results in the obligations in which b replies to ι (which

adds obligations 28 and 29 on the buyer (Figure 43), and 20 and 21 on the carrier

(Figure 48)).

5.10.12 Accepting Books

The last interaction in this conversation (labelled as interaction 12 in Figure 41) indicates

the execution of b’s operation AcceptingToReceiveBooks, which specifies that b accepts to

discharge the delivery of the books. This acceptance is uttered if obligations exist in which

b replies to a proposal to discharge the handing out of the books (which exist as obligations

28 and 29). The uttering of this acceptance results in the application of the following

policies:

• Policy 2 (replying to a proposal discharges the obligations to reply): the acceptance

to uptake the operation proposed in ι discharges the obligations to reply to ι (thus

deleting obligations 28 and 29 on the buyer, and 20 and 21 on the carrier).

• Policy 3 (accepting a proposal causes the uptake of the proposed operation): the

acceptance to uptake the operation proposed in ι causes the discharge of a

commitment to hand out the books (which is a shared commitment that does not

exist between b and c) as well as obligations 24 and 25 on the buyer, and 16 and 17

on the carrier), and lastly,

189

• Policy 4 (accepting to discharge a ProposingToDischarge action discards the

obligations in which the discharger is to propose discharging the action): the

acceptance to discharge the commitment to hand out the books results in the

discharge of the obligations in which c is to propose discarding the commitment to

hand out the books (therefore deleting obligations 26 and 27 on the buyer, and 18

and 19 on the contractor).

5.10.13 Conclusion

At this point the conversation has ended. However, it left several commitments and

obligations left to discharge. That is the case of

• the buyer, who keeps a shared commitment with the seller in which the carrier is

committed to hand out the books (labelled as commitment C in Figure 43 and

Figure 46);

• the seller, who keeps this same shared commitment with the buyer, and also a

shared commitment with the carrier in which he (the carrier) is to deliver the books

to the buyer (labelled as commitment E in Figure 46 and Figure 48); and lastly

• the carrier, who keeps this same shared commitment with the seller in which he

delivers the books to the buyer (plus the obligations to deliver the books).

To understand why these commitments and obligations are left after the interaction has

ended, it is necessary to analyse the characteristics of common types of delivery, such as

normal mail and courier delivery.

In the case of normal mail, the simplest scenario is that of a sender sending a letter to a

receiver. There are two steps in this scenario: first, the sender deposits the letter in the post

office; and second, the post office delivers the letter to the receiver (here the reference to

the post office is intended as a reference of the mail system as a whole).

Similar to the conversation example above, depositing the letter in the post office creates a

commitment between the sender and the post office for the delivery of the letter. Since

190

there is normally no further communication between the post office and the sender, this

commitment is never discharged.48 This same result prevails in the case of registered

deliveries (such as courier and express services), since there is still no proactive

communication from the carrier to the sender to acknowledge the delivery, thus leaving the

commitment unresolved.49 Additionally, there are deliveries where the receiver is aware

that a letter is being sent (which is the case of the above example, where the buyer and the

seller shared a commitment in which the carrier delivers the books). Although this

commitment could be discharged with additional communications (e.g., “I received the

package”, “Did you receive the package?”), these communications are not routinely used.50

The question now is what to do with these remaining commitments (and obligations). In

the case of humans, senders may assume that a letter was delivered if no exception is

produced (e.g., the letter is not returned) or if there is a confirmation of delivery from the

receiver or the carrier (e.g., a replying letter, an acknowledgement). These events could

justify the sender’s discharge of the commitment that the carrier delivers the letter.

Likewise, that a carrier has delivered a letter could justify him in discharging the

commitment shared with the sender in which he delivers the letter. And lastly, that a

receiver receives the letter she was expecting allows her to discharge the commitment with

the informer agent (e.g., the seller in the above example) in which she is to receive a

delivery.

48 Compare this case with that in which the letter is sent back to the sender. This could be interpreted as a
proposal to discharge the commitment to deliver given that an exception has occurred (e.g., the address does
not exist, the receiver no longer resides in that address).
49 Recently, Internet-based tracking systems (which report the processing centres through which a package
has passed) have made it possible to follow the development of a delivery. Although such systems could be
seen as a possible mechanism for justifying the discharge of commitments to deliver, they are not considered
at this point.
50 Interestingly, joint activity specifications support the spontaneous occurrence of conversations dealing with
the state of the activity. For example, knowing that sellers deliver books through carriers allows buyers to ask
sellers whether or not their requested books have been given to the carrier, or sellers to enquire carriers the
status of their deliveries, or (as indicated above) sellers to ask buyers whether or not they have received their
books from the carrier. Although such conversations can account for richer interactions, they are not explored
in this thesis.

191

Interestingly, these assumptions leading to the discharge of commitments and obligations

are not part of the model for conversations since they are not derived by the explicit

negotiation of shared social commitments. Rather these rules depend on the cognitive

ability of agents and the norms and traditions prevailing in the society of interaction, which

is a topic that is discussed in a later chapter on future research.

5.11 Summary

This chapter presented an example of how the model for conversations can be applied to a

practical domain, in this case, the selling and delivering of books. This example involved

three agents: a buyer (who requests to buy books to a seller), a seller (who sells the books

to a buyer, and requests their delivery to a carrier), and a carrier (who delivers the books to

the buyer). In addition, the example involved three joint actions: selling, delivering and

paying. Selling and delivering were defined as payable actions, that is, actions that entail a

paying action leading to the production of a payment.

The interaction in the example was initiated with a buyer’s request to a seller for buying

books. This request was followed by the seller’s acceptance to sell and a request for

payment. This led to the buyer’s payment, and the seller’s acceptance of the payment and

notification of the future delivery of the books, which signalled the end of the sale. At this

point, the seller contacted the carrier to arrange delivery of the books. Once a payment was

produced the carrier delivered the books to the buyer, thus ending the interaction.

It was pointed out that these interactions did not discharge all commitments and obligations

adopted by the buyer, seller and carrier. Although additional communications could have

discharged them it was noted that in human settings these commitments and obligations are

usually discarded through reasoning (rather than communications). As will be explained in

a later chapter, the integration of the observable rules in the model for conversations and

the cognitive rules that affect the commitments and obligations established by these

observable rules is left as an exercise for future research.

192

Chapter 6

Evaluation and Conclusion

6.1 Overview

This chapter revisits the requirements for a model for conversations set in Chapter 2, and

evaluates whether or not the presented model for conversations satisfies these requirements.

This analysis is followed by a brief comparison of this model with other approaches to

agent communication languages and conversations (which were introduced in Chapter 2).

This is followed by a brief account of future work in the areas of rational social action and

deliberate normative agency. Lastly, this chapter concludes by revisiting the research

objectives set at the beginning of the thesis (Chapter 1), and demonstrates how the material

presented in this thesis satisfies those objectives

6.2 Revisiting the Requirements

The goal of this thesis was to define a model for the specification and analysis of software

agent conversations. Two requirements were set in Chapter 2 for this model:

1. To support agent conversations in open environments, a model for conversations

must specify its message semantics using publicly verifiable principles.

2. To support the form of conversations, a model for conversations must define

policies governing conversational composition.

193

In the preceding chapters, this thesis presented a model for conversations (Chapter 3) and

related examples (Chapters 4 and 5) that support these requirements.

6.2.1 Publicly Verifiable Semantics

One of the main contributions of this research is to have defined a model for conversations

that is based exclusively on observable behaviour.

In this thesis it is assumed that agents bind their autonomy to the conversational norms in a

society where they seek to collaborate with other agents. This same assumption can be

made about the ACL surveyed in an earlier chapter in this thesis. In the case of ACL based

on mental attributes, agent communications are not only intentional but are also assumed to

be sincere. That means that agents must assume that others always say the truth (unless

they reason otherwise) since the intended meaning of an utterance is not verifiable (without

inspecting other agents’ minds). In contrast, the model for conversations presented only

assumes that communications have a perceivable aim.51

In this model, the meaning of a speech act is given by the emergent product of the identity

of the elements in the speech act, the rules indicating how these elements are used in

conversations, and the rules indicating their consequences, that is:

• The identity of elements is given by the definition of actions, obligations, social

commitments, and the operations and various illocutionary points used toward the

shared uptake of social commitments. Although at this level the model uses names

that have a recognized meaning in human discourse, they are only intended as

nametags (e.g., the illocutionary point subtype labelled Propose).

• The use of elements is regulated by the Protocol for Proposals, specifically by

conversation policies 1 and 2. These policies reflect the conversational properties

of sequencing, turn-taking and choice towards the shared uptake of social

51 Just as in the case of human interactions, this assumption makes agents responsible for the messages they
utter (and also it does not take into account agents with defective communication mechanisms).

194

commitments, that is, they specify that a proposal by Alice must be followed

(sequencing) by either (choice) an acceptance or a rejection from Bob (turn-taking).

• Lastly, the consequences of using these elements is defined by conversation policy

3, which indicates that a proposal followed by an acceptance causes the uptake of

the negotiated operation on a social commitment, thus affecting the state of shared

social commitments and obligations of the interacting agents.

In this view, the meaning of uttering a proposal (for example) can be interpreted as a

communication in which the speaker is putting forth for consideration an operation on a

social commitment that is intended to affect the state of shared social commitments and

obligations of agents.52

In addition, speech acts are compositional and can encompass several illocutionary points.

This allows the interpretation of the meaning of a speech act as the combined meaning of

its enclosed illocutionary points. Moreover, meaning can emerge at the level of the

activity, where a speech act can be interpreted according to the interactions specified in the

activity; and meaning can also emerge at a higher level, where a speech act could be

interpreted according to the past interactions between agents.53

From these it is possible to conclude that the model for conversations specifies the

principles to support a publicly verifiable message semantics (thus fulfilling the first

requirement).

52 Compare this definition with that of a proposal found in a common dictionary: “1: an act of putting forward
or stating something for consideration.” (Merriam-Webster, 2002).
53 To exemplify these different levels of interpretation, imagine the case in which an agent is proposing to a
travel agent to buy an airplane ticket to a resort destination abroad. By analysing this utterance outside of any
context, one could imply just that: that the agent attempts to buy an airplane ticket. If analysed under the
scope of an activity, let us say a vacations package activity, one could infer that the agent is planning to go on
holidays (rather than on a business trip, for example). Lastly, that one analyses the utterance under a higher
level of abstraction that includes the observed past interactions of the agent, one could conclude that, given
that the agent was recently released on bail, the agent is avoiding the law and fleeing the country.

195

6.2.2 Conversational Composition

Joint activities specify the constraints that conversations should abide by. In particular they

specify the sequencing of agent participations (i.e., the conversational moves), defining the

order in which commitments to action are negotiated.

In addition to the fine-grained conversational composition supported by the PFP (i.e., that

proposals must be followed by acceptances or rejections), the model for conversations

defines policies that help to advance the state of joint activities. That is the case of policies

4 and 5 (which commit agents to propose the discharge or adoption of shared

commitments), and policies 6 and 7 (which commit agents to request a payment for an

action). Together, these policies support structured conversations for action, and are an

improvement over traditional approaches to representing conversations protocols, which do

not specify any formal semantics beyond those of their corresponding graphical

representations.

In addition, the model for conversations supports the requirements for a conversation model

set forth by Greaves, et al. (1999):

• It must be independent from specific implementation techniques: The presented

model emphasizes observable behaviour, thus focusing on what lies between rather

than within agents. This approach allows the interoperation of heterogeneous types

of agents.

• It must be flexible enough to allow dynamic context-dependent composition:

Conversational flexibility is supported by the PFP and is regulated by the

interaction specified in joint activities. In the interaction examples presented in the

preceding chapters, flexibility was sacrificed to highlight the systematic

composition of conversations (it can be noticed that most PFP instances in these

examples were mere pairs of proposals and acceptances). To highlight the

flexibility of interactions within a single PFP instance, Figure 49 shows an example

diagram containing all communications allowed in the PFP. To make this example

196

more engaging, imagine the interaction as part of a larger conversation in which a

buyer is buying items from a seller, and where this PFP instance shows the

communications to adopt a commitment in which the buyer pays for the items being

bought (the representation of the speech acts in this example was greatly simplified

to emphasize the illocutionary point and action being communicated). The

interaction begins with the seller’s proposal to pay. As shown in the figure, the

allowed responses include the buyer’s acceptance, the buyer or the seller’s rejection,

the buyer’s counterproposal (thus allowing bargaining) and the seller’s

counterproposal to its own proposal. This latter case is similar to the initial

proposal in the sense that any of the just mentioned replies could follow. This PFP

instance ends if the buyer accepts, or if the buyer or the seller rejects. Lastly, in the

case that the buyer counterproposes then the following could occur: the seller could

accept, or both agents could reject (thus ending the PFP instance), or both agents

could counterpropose (thus continuing the bargaining).54 As a result, this example

and the examples in previous chapters show that the PFP supports flexible

conversations both within individual PFP instances and by composing sequences of

PFP instances.

• It must support conversations among agents of different levels of sophistication: To

be able to converse, agents do not need to implement all possible message

sequences in a joint activity interaction; for example, less able agents may not allow

counterproposals, which they could immediately reject upon occurrence. In this

view, agent implementations could stretch from those less able agents that follow

the most straightforward sequence of messages (and which may not even have any

internal representation of the commitments negotiated), to agents with rational

54 As implied, this interaction could continue indefinitely as long as agents keep counterproposing. At this
point, the model does not consider the implications of deadlocks in conversations, since there might be
different rational, context-dependent strategies to avoid and recover from such states (which is an analysis
beyond the scope of this thesis).

197

engines allowing them to extend and refine their conversations to account for the

context of occurrence. In any event, these agent types should be able to seamlessly

interact as long as the conversation abides by the interaction specification in the

activity.

6.3 Implementation

The model for conversations is designed as a framework for keeping track of the shared

social commitments and obligations that are negotiated by agents through their

communications. As seen throughout this thesis, the model was formalized using the

Object-Z specification language. This language allows for a forthright translation from a

formal specification to the object-oriented programming language of choice, which in this

case was the Java programming language (Sun, 2002).

Figure 49. Example PFP instance interaction between a buyer and a seller.

198

Figure 28 and Figure 50 show snapshots of the resulting test bed implementation. As

shown in these figures, each interacting agent has a monitor window that displays the

shared commitments and obligations it has adopted, as well as the conversation policies

applied during the last communication it received. In accordance with the model for

conversations, these agents are only representations of agents in the environment, and all

the information maintained about them is based on their observed communications. As

such, the agent representations implemented for the test bed (i.e., those depicted in the

figures) do not send messages to each other, but rather are given the messages that are

perceived to occur by the entity maintaining these representations. In the case of the test

bed, these messages were predefined in the window object labelled “Society”, which passes

these messages to the agent representations for processing through the conversation policies

of the model for conversations.

It is foreseen that future implementations of the model will have a more a practical

application than just that of a static simulator of conversations. Presently, work is being

pursued to implement a test bed engine for agents in the Collaborative Agent System

Architecture (Flores, Kremer and Norrie, 2000). This work could also be adapted for

agents in the FIPA’s multi-agent systems architecture (FIPA, 1997).55

55 In principle, any agent interacting in the FIPA architecture can be built with an engine that follows the
specifications in the model for conversations. This, however, does not imply that FIPA conversation policies
are subsumed by the principles in the model. This thesis asserts that conversation protocols are made-up
message sequences constructed without any formal principles. This is true of the protocols supported by
FIPA. As such, it is not expected that the sequencing of messages making a FIPA protocol (which do not
have any principles behind their construction) can be explained using the model for conversations. On the
other hand, it is the contention of this thesis that the principles of the model are general enough as to account
for non-trivial conversations for action. That is, that conversations such as the Contract Net Protocol have
been successfully modelled gives a certain assurance that simpler conversations (such as queries and requests)
can be modelled as well. This, however, does not justify the claim that the model for conversations could
model all conversations for action; to assert such a claim, one would need to model all conversations for
action that could possible exist (certainly a daunting if not impossible task); on the other hand, to negate this
claim (i.e., that the model cannot be used for all conversations for action), one would need to demonstrate that
there exists at least one conversation for action that cannot be specified using the model. Since both of these
issues are still to be resolved, the claim of the absolute generality of the model for conversations to specify
conversations for action cannot presently be justified (or denied).

199

Figure 50. Snapshot of the simulation of the eBookstore conversation example.

200

In terms of performance and efficiency of implementation, it is not straightforward to

derive whether ad hoc conversation protocols or the model for conversations better support

agent conversations. It remains uncertain since both approaches can be implemented using

the same techniques: the model for conversations can be implemented as rules of inference

for knowledge bases or can be used for building protocols, which then can be implemented

either as sequences of operations in programming languages, or also as rules of inference in

knowledge bases. Arguably, the implementation of protocols using regular procedural or

object-oriented programming languages may provide more efficient implementations (e.g.,

in terms of speed and code size, which might be especially desirable for simple agents) than

those implementations based on knowledge bases.

At this point, the issue becomes whether or not ad hoc protocols have any advantages over

those protocols constructed using the model for conversations. Empirically, one advantage

is that ad hoc protocols use less messages for accomplishing a task than protocols based on

the model for conversations. Even without an exhaustive analysis, it can be derived that

this assertion is likely to be true.56

For example, a protocol for giving the time could be constructed by using only three

messages: an initial message for requesting the time, and two other messages that could

follow it: one for rejecting giving the time, and another one for communicating the time.

Therefore, asking and getting the time using this protocol requires exactly two messages;

this contrasts with the minimum of three messages for doing the same task using the model

for conversations (as illustrated by the example in Chapter 1). As such, there is a one-

message (or 50%) overhead for the model for conversations over this ad hoc protocol.

The Contract Net Protocol example provides a further point for comparison. In the case of

the FIPA contract net protocol, the minimum number of messages for successfully

56 It is important to remark that this thesis is not concerned with the study of current protocols as to
understand the assumptions made by designers when constructing these protocols. The contention is that
designers do make assumptions (e.g., whether or not an acknowledgement is required after an inform), and
those assumptions are likely to result in simpler protocols.

201

delegating and executing an action is four.57 In contrast, the minimum number of messages

in the Contract Net example presented in this thesis is five.58 Although this represents still

has a one-message overhead, the proportional difference is now reduced to 25%. It is

worthwhile noticing that, even though these two examples are not enough for generalizing,

they do hint that the proportional difference in the number of messages between ad hoc

protocols and protocols based on the model for conversations may get smaller as the

number of messages in an activity increases.

Lastly, probably the main disadvantage of the model for conversations over ad hoc

protocols is the complexity associated with the construction of protocols using the

principles in the model. That is, although the model for conversations is based on

principles and ad hoc protocols are not, having such principles plays to the model’s

disadvantage, since the structuring of conversations must abide to strict rules of inference

(the reader may recall the level of detail required to infer small transitions in the proof

shown in Chapter 4). It will not be until tools that reduce the load associated with this

inference process are made available that the construction of protocols will become more

accessible to the every day designer of multi-agent system conversations. The development

of such tools is still an issue open to explore.

On the other hand, the conversations based on ad hoc protocols are normally less flexible

than conversations in the model for conversations. To illustrate this flexibility, we

calculate the number of different conversations that could exist in an activity that uses the

protocol, in particular the CNP activity presented in Chapter 4. For that, the following

variables and formulae are defined

57 This number is obtained from the sequence of messages “cfp”, “propose”, “accept-proposal”, and “inform”
specified in the FIPA contract net protocol (FIPA, 1997).
58 This number is obtained from the sequence of messages “RequestingBid”, “AcceptingToBid +
SubmittingBid”, “EvaluatingBid + AwardingContract”, “AcceptingAward + SubmittingResult” and
“AcceptingResults”, which are specified in the interaction protocol in Figure 24.

202

• the depth of a PFP instance (denoted as κ, where κ∈N1) is the maximum number of

consecutive counterproposal illocutions in a PFP instance. For example, that a PFP

instance has a κ=1 indicates that any counterproposal is automatically rejected (thus

restricting the depth of the PFP); if κ=2, then the second consecutive

counterproposal is rejected; if κ=3, then the third consecutive counterproposal is

rejected; and so on.

• Α is specified as the number of possible accepting sequences (i.e., sequences

terminating with an Accept illocutionary point) for any PFP instance of depth κ.

This variable is formulated as

∑
=

=

−=
1

κ

12
i

i

iΑ

• R is defined as the number of possible rejecting sequences for any PFP instance of

depth κ (including the counterproposals that are rejected at depth κ). This variable

is formulated as

�
=

=

+=
1

κ

κ 22
i

i

iR

• η (where η∈N1) is defined as the number of a series of consecutive PFP instances of

depth κ advancing the state of an activity, and N is specified as the number of all

accepting sequences in a series of consecutive PFP instances. N is formulated in

terms of A and η as

N = Aη

• Lastly, Τ is defined as the total number of illocution sequences (either accepting or

rejecting) that could exist in a sequence of η consecutive PFP instances of level κ. 59

This variable is calculated through the following series

59 The definition of N and T are only intended to reflect certain characteristics of CNP conversations. Some
of the assumptions made for these definitions are: they are intended for conversations where PFP instances do

203

T = R1 + A1(R2 + A2(…(Rη-1 + Aη-1(Rη + Aη))…))

Given the above, one could calculate N (the number of possible sequences that could

successfully carry out the activity) and T (the total number of sequences in a series of PFP

instances) for the CNP conversation presented in Chapter 4, where the number of

consecutive PFP instances required to successfully carry out the execution of a contract was

four (i.e., η=4). If the depth of these instances is arbitrarily set to three (i.e., κ=3), then it is

possible to conclude that there could exist at least 2.401 different conversations (given by

N) that could successfully carry out a contract in the CNP example. Moreover, the total

number of different conversations that could exist (given by T) would be at least 11.201.

This contrasts with the one conversation sequence that can possibly exist for doing the

same task in the FIPA contract net protocol, thus showing that the model for conversations

can be more flexible than ad hoc conversation protocols.

6.4 Research Contributions

Prevalent ACL were briefly surveyed earlier in Chapter 2. These ACL were classified

according to the principles they used for defining the meaning of their messages as either

based on mental attributes or based on social commitments. ACL based on mental

attributes (i.e., JIT, FIPA ACL and KQML) have the advantage of simplifying the inference

of speakers’ intentions from utterances by directly defining such intentions (or a minimal

subset of them) as the meaning of their utterances. However, this approach is only useful

under the assumption that agents are always sincere, that is, that their utterances

undoubtedly reflect their mental states. Since this sincerity condition has been widely

not occur concurrently (as in the case of the eBookstore example in Chapter 5); for conversations where there
is only one sequence of PFP instances such as the acceptance in one leads to the proposal in the next (e.g., the
contractor’s acceptance to submit a bid leads to a proposal to have the bid evaluated); and for conversations
where there are no exceptions or abnormal terminations (e.g., a contractor that has accepted to submit a bid
proposes to discharge this commitment when he realizes that he cannot fulfill it). As such, any outcome of
using these definitions to compute the number of different conversation instances is less than the possible
number that could exist.

204

criticized as a viable option for open environments, this thesis set out to explore utterance

meaning under a different light: that of meaning based on observable behaviour,

particularly, through the use of social commitments to action.

This use of social commitments to define utterance meaning is the approach also taken by

the social ACL surveyed in Chapter 2 (i.e., Singh and Colombetti’s models).60 In general,

there exist conceptual differences between these models and the model for conversations.

In the case of Singh’s model, the meaning of utterances is defined through a three-layered

classification of their objective, subjective and practical meaning (where the objective layer

defines their public meaning, the subjective layer defines their meaning under a state of

sincerity, and the practical layer defines the contextual justifications for their occurrence).

In this view, Singh’s model covers a wider range of meaning than the model for

conversations (which focuses on the objective layer), and the various ACL based on mental

states (which mainly address the subjective layer).61 In the case of Colombetti’s Albatross,

speech acts are defined as actions, which is an approach that is conceptually similar to the

definition of speech acts in the model for conversations. More important, however, is

Colombetti’s recognition that the isolated utterance of speech acts cannot result in the

establishment of social commitments (which is an issue still to be adopted by Singh’s

model). Rather, he argues, utterances create pre-commitments that must be ratified

(through subsequent speech acts) to become social commitments. This explicit agreement

to establish commitments is similar in spirit to the negotiation of commitments in the model

60 One other approach to conversations based on commitments (which was recently brought to the attention of
the author) is the model presented by P. McBurney and S. Parsons (2002), which is based on the typology of
human dialogues for argumentation described by D.N. Walton and E.C.W. Krabbe (Walton & Krabbe, 1995).
Although the model for conversations may be seen as more applied than this model, there are conceptual
parallels between them, such as the notions of dialogic and semantic commitments (where the former are
commitments that are only meaningful within dialogues, and the latter are commitments that have
consequences outside the dialogue). These commitments could be paralleled to those generated by policies 1
and 2 (which are intended only for advancing conversations), and policy 3 (which affects the state of shared
commitments and obligations of the agents), for example.
61 Congruently to his stance on heterogeneity, Singh dismisses subjective meaning as a viable semantic
element for utterances in open environments.

205

for conversations; nevertheless, the notion of pre-commitments is not yet developed in

Albatross (as it is done in the model for conversations) to account for the systematic

sequencing and turn-taking in conversations.

It is probably for this issue (the form of conversations) that the model for conversations

stands out over current ACL. Presently, most of these ACL completely rely on ad hoc

conversation protocols to guide their conversations. The exception is Singh’s commitment

machines model (Yolum & Singh, 2001), which (in the same vein as in the model for

conversations) defines that the uttering of speech acts declares social commitments that are

adopted and discharged as conversations evolve. Although their objectives are similar, the

model for conversations and Singh’s model have important differences. Particularly, the

model for conversations explicitly accounts for the sequencing and turn-taking in

conversations, and it does so through the explicit negotiation of fine-grained conversational

commitments (such as, to speak, to voice and to hear). That is, Singh’s model makes use of

social commitments for describing protocols, but these commitments do not define the

structure of these protocols (in other words, sequencing and turn-taking is still an implicit

property of the protocols used). An additional advantage of the model for conversations is

that it provides more for the autonomy of agents by negotiating the uptake of commitments

(rather than just assuming that a commitment exists once an utterance has occurred), which

is especially important when utterances are intended to commit agents other than the

speaker. This is an issue that is still to be address by Singh’s model.

To recap, the main contribution of this thesis is to have defined a model for conversations

that supports the systematic composition of conversations (i.e., the form of conversations)

by using observable behaviour (and thus supports agents in open environments). This

model is an improvement over current ACL in both its account of utterance meaning based

on observable behaviour, and its systematic approach to structure conversations.

206

6.5 Future Research

At present, the model for conversations specifies a mechanism for mutual agreement to

establish responsibilities toward the execution of actions. This model is based exclusively

on observable behaviour, and it is independent (but complementary) to the cognition

guiding the actions of goal-directed agents.

The importance of social commitments is that they provide for a principled way to connect

the external world of interactions with the internal world of individual rational action. As

such, one main avenue for future research is to investigate the value of social commitments

in bridging the concepts of rationality (which are inherently private) and conversations

(which are public social phenomena). One area to explore is that of theories of individual

social action (Conte & Castelfranchi, 1995), specifically those dealing with the modelling

of deliberate normative agents, that is, agents that guide their behaviour by reasoning about

the norms in their society (Castelfranchi, et al., 2000). Moreover, by being able to reason

about norms, agents could infer the normative reasoning of other agents based on their

observable communications, which allows predicting and influencing future behaviour.

This type of agent could then be applied to open environments where the coordination of

action is regulated and globally optimized by monitoring agents (e.g., Pechoucek & Norrie,

2000).

6.6 Revisiting Research Objectives

Five research objectives were defined at the beginning of this thesis. These objectives

were:

1. To survey the state of the art on agent communication languages to find their

adequacy to support agent conversations.

2. To define the requirements that a model for conversations should support.

207

3. To propose a model for conversations that fulfills the requirements previously

obtained.

4. To evaluate the feasibility of the model for conversation in a range of practical

domains.

5. To propose further research based on the experiences obtained.

6.6.1 Related Work

The first objective was:

To survey the state of the art on agent communication languages to find their adequacy to

support agent conversations.

This objective was met in Chapter 2, where current agent communicational languages were

surveyed. These ACL were analysed in two separate groups: those based on mental

attributes (Cohen and Levesque’s Joint Intention Theory, FIPA ACL and KQML) and those

based on social commitments (Collombetti’s and Singh’s models).

6.6.2 Requirements

The second objective was:

To define the requirements that a model for conversations should support.

This objective was also met in Chapter 2, where two requirements were set for a model for

conversations. First, it was identified that ACL based on mental states are not adequate to

support the interaction of heterogeneous agents, since speech acts in these ACL are defined

using rational conditions that cannot be verified in open environments. As a result, it was

specified that ACL in open environments must have a verifiable semantics. Second, it was

identified that all of the surveyed ACL relied on conversation protocols to structure

conversations. As a result, it was specified that a model for conversations must define rules

that allow the composing of conversations.

208

6.6.3 A Model for Conversations

The third objective was:

To propose a model for conversations that fulfills the requirements previously obtained.

This objective was met in Chapter 3, where a model for conversations was defined. This

model lays down the principles upon which a verifiable semantics for conversations can be

built (namely identity, use and consequences), and specifies a model for structuring

conversations based on the negotiation of shared social commitments and obligations.

6.6.4 Application

The fourth objective was:

To evaluate the feasibility of the model for conversations in a range of practical domains.

This objective was met in Chapters 4 and 5, where examples of the application of the model

for conversations were presented. These examples specify the interaction of agents in an

implementation of the Contract Net Protocol (which is a task allocation mechanism

frequently used in multi-agent systems), and an e-commerce application (in which a buyer

buys books from a seller, who then contracts with a carrier for delivering the books).

6.6.5 Future Work

The fifth and last objective was:

To propose further research based on the experiences obtained.

This objective was met in Chapter 6 (the current chapter), where examples were given of

future development of the model. Specifically, its was noted that the model can be

complemented with formal rational frameworks for speech acts and social rational action.

6.7 Fulfilling the Aim

The aim of this thesis was to define a model for the structured specification of software

agent conversations for action. The objectives set for the thesis (and reviewed above)

209

provided a disciplined approach to satisfying this aim: first, by identifying the shortcomings

of current ACL, and then by proposing a model for conversations that overcomes these

shortcomings. This was followed by practical examples that illustrated the applicability of

the model to support the principled specification of conversations for action. In particular,

these examples showed how instances of the Protocol for Proposals could be used as the

basic conversational components to assemble the interactions in joint activities, and how

these interactions are constrained to indicate the characteristics of actions, such as their

sequencing and the agent roles involved in their performance. Once assembled, these

interactions are applied to govern the evolution of conversations in the context of their

corresponding joint activity.

6.8 Conclusion

This thesis presented a model for the structured specification of software agent

conversations for action. This model structures conversations using conversation policies

whose principle is the negotiation of shared social commitments to action.

This thesis presented the current state of the art on agent communication languages and

showed some of their weaknesses in supporting the flexible communication of agents in

open environments, specifically their reliance on non-verifiable rational components for

speech act semantics, and on static conversation protocols for the composition of

conversations. The research presented in this thesis describes a model for conversation that

advances on such issues by a) presenting the principles upon which a publicly verifiable

message semantics can be constructed, and b) presenting a framework for the definition of

flexible conversations that follow conversation policies. The application of this model was

illustrated through two conversation examples, one on the Contract Net Protocol, and the

other on a generalized example of an e-commerce scenario. Lastly, this thesis presented an

evaluation of this model and a brief account of future research.

210

References

 Austin, J.L. How to Do Things with Words. Harvard University Press, 1962.

 Bradshaw, J.M., Dutfield, S., Benoit, P. and Woolley, J.D. KAoS: Toward An Industrial-
Strength Open Agent Architecture. In J.M. Bradshaw (Ed.), Software Agents, AAAI
Press, 1997, pp. 375-418.

 Bratman, M.E. What is Intention? In P.R. Cohen, J. Morgan and M.E. Pollack (Eds.),
Intentions in Communication, MIT Press, pp. 15-31, 1990.

 Castelfranchi, C., Dignum, F., Jonker, C. and Treur, J. Deliberate normative agents:
principles and architectures. In Intelligent Agents VI, Lecture Notes in Artificial
Intelligence 1757, Proceedings of the 6th International Workshop on Agent Theories,
Architectures, and Languages (ATAL '99). Springer, Springer Verlag, Berlin, 2000,
pp. 206-220.

 Centre for Applied Formal Methods (CAFM). The Z Notation, 2002.
http://www.afm.sbu.ac.uk/z/

 Clark, H.H. Using language. Cambridge University Press, 1996.

 Cohen, P.R. and Levesque, H.J. Rational Interaction as the Basis for Communication. In
P.R. Cohen, J. Morgan and M.E. Pollack (Eds.), Intentions in Communication, MIT
Press, pp. 221-255, 1990.

 Cohen, P.R. and Levesque, H.J. Intention is Choice with Commitment. In Artificial
Intelligence, Elsevier Science Publishers, Number 42, pp. 213-261, 1990.

 Cohen, P.R., Morgan, J. and Pollack, M.E. Introduction. In P.R. Cohen, J. Morgan and M.E.
Pollack (Eds.), Intentions in Communication, MIT Press, pp. 1-13, 1990.

 Colombetti, M. A Commitment-based Approach to Agent Speech Acts and Conversations.
In M. Greaves, F. Dignum, J. Bradshaw, and B. Chaib-draa (Eds.), Proceedings of
the Workshop on Agent Languages and Conversation Policies, 4th International
Conference on Autonomous Agents (Agents 2000), Barcelona, Spain, pp. 21-29,
2000.

 Conte, R. and Castelfranchi, C. Cognitive and Social Action. University College London
Press, 1995.

 Conte R. and Dellarocas, C. Social Order in Multiagent Systems. Kluwer Academic
Publishers, 2001.

211

 Cost, R.S., Chen, Y., Finin, T., Labrou, Y. and Peng, Y. Modeling Agent Conversations
with Colored Petri Nets. In M. Greaves and J. Bradshaw (Eds.), Proceedings of the
Workshop on Specifying and Implementing Conversation Policies, 3rd International
Conference in Autonomous Agents (Agents ’99), Seattle, WA, pp. 59-66, 1999.

 Craig, R.T. and Tracy, K. Introduction. In R.T. Craig and K. Tracy (Eds.), Conversational
Coherence: Form, Structure, and Strategy. Sage Publications, pp. 10-22, 1983.

 Diller, A. Z: An Introduction to Formal Methods. John Wiley and Sons, 1990.

 Fagin, R., Halpern, J.Y., Moses, Y. and Vardi, M.Y. Reasoning about Knowledge. MIT
Press, Cambridge, Massachusetts, 1995.

 Ferber, J. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-Wesley Publishing, Co., 1999.

 Finin, T., Labrou, Y. and Mayfield, J. KQML as an Agent Communication Language. In
J.M. Bradshaw (Ed.), Software Agents, AAAI Press / The MIT Press, 1997, pp. 291-
316.

 Flores, R.A., Kremer, R.C., and Norrie, D.H. An Architecture for Modeling Internet-based
Collaborative Agent Systems. In T. Wagner and O.F. Rana (Eds.), Infrastructure for
Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, Lecture Notes in
Computer Science, Volume 1887, Springer Verlag, 2001, pp. 56-63.

 Foundation for Intelligent Physical Agents (FIPA). FIPA Specifications, Version 1, 1997.
http://www.fipa.org

 Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading Mass., Addison Wesley, 1995.

 Genesereth, M.R. and Ketchpel, S.P. Software Agents. In Communications of the ACM,
Volume 37, Number 7, pp. 48-53, July 1994.

 Greaves, M., Holmback, H. and Bradshaw, J. What is a Conversation Policy? In M. Greaves
and J. Bradshaw (Eds.), Proceedings of the Workshop on Specifying and
Implementing Conversation Policies, 3rd International Conference in Autonomous
Agents (Agents ’99), Seattle, WA, pp. 1-9, 1999.

 Habermas, J. The Theory of Communicative Action. Beacon Press, 1984.

 Jennings, N.R. and Wooldridge, M.J. Agent Technology: Foundations, Applications and
Markets. Springer-Verlag, 1998.

 Kumar, S., Huber, M., McGee, D., Cohen, P., and Levesque, H. Semantics of agent
communication languages for group interaction. Proceedings of the 17th National
Conference on Artificial Intelligence, AAAI Press/The MIT Press, pp. 42-47, Austin,
Texas, 2000.

 Labrou, Y. Semantics for an Agent Communication Language. Doctoral Dissertation,
Department of Computer Science and Electrical Engineering University of

212

Department of Computer Science and Electrical Engineering, University of
Maryland, 1997.

 Labrou, Y. and Finin, T. Semantics and Conversations for an Agent Communication
Language. In M.N. Huhns and M.P. Singh (Eds.), Readings in Agents, Morgan
Kaufmann Publishers, 1999, pp. 235-242.

 Merriam-Webster. Collegiate Dictionary. Online edition, 2002. http://www.m-w.com/

 Odell, J.J., Parunak, H.V.D. & Bauer, B. Representing Agent Interaction Protocols in UML.
In P. Ciancarini & M.J. Wooldridge (Eds.), Agent-Oriented Software Engineering,
LNCS 1957, Springer, 2001.

 Pechoucek, M. and Norrie, D.H. Knowledge Structures for Reflective Multi-Agent Systems:
On Reasoning about other Agents. Report 538. University of Calgary, Department of
Mechanical and Manufacturing Engineering, 2000.

 Perrault, C.R. An Application of Default Logic to Speech Act Theory. In P.R. Cohen, J.
Morgan and M.E. Pollack (Eds.), Intentions in Communication, MIT Press, pp. 161-
185, 1990.

 Sadock, J.M. Comments on Vanderveken and on Cohen and Levesque. In P.R. Cohen, J.
Morgan and M.E. Pollack (Eds.), Intentions in Communication, MIT Press, pp. 257-
270, 1990.

 Searle, J.R. Expression and Meaning, Cambridge University Press, 1975.

 Singh, M.P. Agent Communicational Languages: Rethinking the Principles. IEEE
Computer, Volume 31, Number 12, pp. 40-47, 1998.

 Singh, M.P. A Social Semantics for Agent Communication Languages. In F. Dignum, B.
Chaib-draa and H. Weigand (Eds.), Proceedings of the Workshop on Agent
Communication Languages, International Joint Conference in Artificial Intelligence
(IJCAI ‘99), Stockholm, Sweden, 1999.

 Singh, M.P., Rao, A.S. and Georgeff, M.P. Formal Methods in DAI: Logic-Based
Representation and Reasoning. In G. Weiss (Ed.), Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence, The MIT Press, pp. 331-376, 1999.

 Smith, I.A., Cohen, P.R., Bradshaw, J.M., Greaves, M. and Holmback, H. Designing
Conversation Policies using Joint Intention Theory. In Proceedings of the 3rd
International Conference on Multi-Agent Systems (ICMAS), Paris, France, pp. 269-
276, 1998.

 Smith, G. The Object-Z Specification Language, Kluwer Academic Publishers, 2000.

 Smith, G. The Object-Z Home Page. 2002. http://www.itee.uq.edu.au/~smith/objectz.html

 Smith, R.G. The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver. In IEEE Transactions on Computers, Volume 29,

213

Number 12, pp. 1104-1113, December 1980.

 Software Verification Research Centre (SVRC). Wizard: A Type-Checker for Object-Z
Specifications, 2002. http://svrc.it.uq.edu.au/Object-Z/pages/Wizard.html

 Spivey, J.M. The Z Notation: A Reference Manual. Prentice Hall, 1992. Available on-line at
http://spivey.oriel.ox.ac.uk/~mike/zrm/

 Sun Microsystems (2002) The Source for Java Technology. http://java.sun.com/

 Tannen, D. That’s Not What I Meant! Ballantine, 1986.

 Walton, D.N. and Krabbe, E.C.W. Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. State University of New York Press, 1995.

 Winograd, T. and Flores, F. Understanding Computers and Cognition: A New Foundation
for Design. Addison-Wesley Publishing Company, Inc., 1987.

 Wooldridge, M. Verifiable Semantics for Agent Communication Languages. In Y.
Demazeau (Ed.), Proceedings of the 3rd International Conference on Multi-Agent
Systems (ICMAS ’98), IEEE Press, 1998.

 Yolum, P. and Singh, M.P. Synthesizing Finite State Machines for Communication
Protocols. Technical Report TR-2001-06. North Carolina State University,
Department of Computer Science, 2001.

214

Appendix A

Z and Object-Z Tutorial

This appendix presents a brief tutorial of the Z and Object-Z specification languages. This

tutorial aims to familiarize readers with the notions used to formalize the model for

conversations described in this thesis. As such, this tutorial is by no means an attempt to

cover all concepts in Z and Object-Z. A comprehensive description of these languages can

be found in (Spivey, 1992) and (Diller, 1990), and (Smith, 2000), respectively.62

A.1 Overview

Smith (2000) defines Object-Z as an extension of the Z specification language (Spivey,

1992) that facilitates the specification of systems in an object-oriented style. On the one

hand, that Object-Z is an extension of Z indicates that it retains the existing familiar syntax

and semantics of Z. On the other hand, that it facilitates the specification of systems in

object-oriented style indicates that it incorporates object-oriented notions such as classes,

inheritance and polymorphism.

62 Additional resources on Z and Object-Z can be found in the World-Wide Web at the Object-Z Home Page
(Smith, 2002) and The Z Notation (CAFM, 2002) web pages.

215

A.2 The Z Specification Language

Z is a formal specification language based on first-order predicate logic and set theory.

This language helps to unambiguously describe the characteristics of computer systems

while abstracting from implementation details (i.e., it “describe[s] what the system must do

without saying how it is done.” (Spivey, 1992, p. 1)).

The following sections describe the main characteristics of this specification language.

A.2.1 Types

Z defines types as sets, that is, as collections of unique elements. Some of the most

common types in Z are N (the type of all natural numbers), N1 (the type of all natural

numbers greater than zero), and R (the type of all real numbers).

The easiest way to define types in Z is by using abbreviated definition, whose symbol is

==. An abbreviated definition makes use of existing types to create a new one; for

example, the definition “Time == N” indicates that the type Time is the same as the type of

all natural numbers.

Beside abbreviated definitions, there are two other approaches to define types: by

enumeration (i.e., by listing all members of the set), and by comprehension (i.e., by

specifying the properties of their elements). For example, the definition “{1, 2, 3, 4, 5}”

simply enumerates a set of natural numbers. The property of this set is that it contains all

natural numbers between 0 and 6. As such, this set can also be described using set

comprehension, for which one possible definition could be “{n: N1 | n < 6 • n}” (this can be

read as “all positive natural numbers n, such that n is less than 6, are the elements that

compose this set”).

A.2.2 Objects

Objects are instances of types. They are declared using an object name followed by a colon

and a type name. For example, the declaration “x, y, z: N” indicates that the type of each of

216

the objects x, y and z is a natural number. There are also cases in which objects do not

reference only one instance (as in the previous example), but a set of instances of a certain

type. These sets are defined using the power set symbol P. For example, the declaration

“x: P R” indicates that x is a set (which well could be empty) of real numbers. The symbol

P1 is used to explicitly specify sets with at least one element. The empty set is represented

either as ∅ or {}.

A.2.3 Propositions

Propositions are expressions that are either true or false. Simple propositions can be

grouped to create more sophisticated propositions by using logical connectives such as

negation (¬), disjunction (∧), conjunction (∨), implication (�) and bi-implication (⇔).

For example, the expression “¬P � Q” is a proposition that can be read as “not P implies

Q”, where P and Q are themselves propositions.

Abstract propositions can be defined by using the universal and existential quantifiers. The

universal quantifier (represented by ∀) specifies the properties of all the objects that abide

to certain characteristics. For example, to indicate that all natural numbers smaller than 50

are also smaller than 100, one could use the expression “∀x: N | x < 50 • x < 100”, which

can be read as “for all natural numbers x, such as x is smaller than 50, then x is smaller than

100.” On the other hand, the existential quantifier (denoted as ∃) is used to indicate that

certain properties are true for at least one object that abides to certain characteristics. For

example, to indicate that there is at least one even number smaller than 50, one could use

the expression “∃x: N | x < 50 • x mod 2 = 0”, which can be read as “there exists at least

one natural number x, such that x is smaller than 50, such that the remainder of dividing x

by 2 is zero.” Lastly, the unique existential quantifier (denoted as ∃1) is a specialization of

the existential quantifier that does not only indicate that there exists an element with the

specified characteristics but also that there exists exactly one such element.

217

Set Propositions

Various set predicates and operations can be used to produce set propositions. Predicates

include the following: set membership (∈), which expresses that an object is an element of

a set; set equality (=), which indicates that one set is equal to another set (i.e., they both

have identical elements); and set inclusion (⊆), which expresses that a set is a subset of

another set. The symbols ∉, Î, and ⊄ specify the negation of the aforementioned

predicates (i.e., that an object is not a member of a set, that two sets are not the same, and

that a set is not a subset of another set, respectively). In addition, the symbol ⊂ is applied

to express that a set is a proper subset of another set (where proper subset means that the

first set is contained in the second set, and that the sets are not equal). Examples of set

predicates are the expressions “1 ∈ N” (which indicates that the number 1 is an element of

the set of natural numbers), “{1, 2, 3} = {3, 2, 1}” (which indicates that the indicated sets

are equal), and “N ⊂ R” (which indicates that the set of natural numbers is a proper subset

of the set of real numbers).

In addition to these predicates, there are three common operations for sets. These are:

union (∪), difference (\) and intersection (∩). To illustrate these operations, let us define

the two sets “{1, 2, 3}” and “{2, 3, 4}”. On the one hand, the union of these two sets

results in a set encompassing all their elements, that is, the set “{1, 2, 3, 4}”; their

difference results in a new set containing those elements that are in the first set that are not

in the second, that is, the set “{1}”; and lastly, the intersection of the two sets results in a

new set that has all elements found in both sets, that is, the set “{2, 3}”.

A.2.4 Sequences

Sequences are sets of ordered elements.63 Sequences are specified either using angle

brackets („ Ò) or the type keyword seq. For example, the definition “„a, e, i, o, uÒ” specifies

63 Specifically, sequences are sets composed of ordered pairs where the first element (a.k.a. the domain) is a
natural number and the second element (a.k.a. the range) is an object of the type specified for the sequence.

218

a sequence of vowels, and the declaration “x: seq N” indicates that x’s type is a sequence of

natural numbers. Empty sequences are represented as „ Ò.

Some of the most common operations applied to sequences are: concatenation (^), which

links two sequences into one, and range (represented by the keyword ran), which returns a

set with the elements in the sequence (c.f., the indexes in the sequence). Other operations

are specifically aimed to select segments in sequences, such as head and last (which select

the first and last elements in a sequence, respectively), and front and tail (which selects the

entire sequence but without the last and first elements, respectively). Examples of the

usage of these operators are the following expressions: “„a, eÒ ^ „o, uÒ”, which returns the

sequence “„a, e, o, uÒ” (i.e., the concatenation of the two sequences); “ran „a, eÒ”, which

returns the set “{a, e}” (i.e., the elements of the sequence); “head „a, e, iÒ”, which returns

the element “a” (i.e., the first element in the sequence); and “tail „a, e, iÒ”, which returns the

sequence “„e, iÒ” (i.e., the sequence without the first element).

A.2.5 Bags

Bags are sets that allow duplicated elements.64 Bags are defined using “fat” square

brackets (“ ‘) or the type keyword bag. For example, the definition ““Andy, Bob, Karyn,

Andy‘” indicates a bag of names, and the declaration “x: bag R” indicates that x is a bag of

real numbers.

Two of the most common operations applied to bags are: domain (represented by the

keyword dom), which returns a set with all the elements in the bag; and bag union (≈),

which combines the elements from two bags into one. The following predicates exemplify

An additional restriction is that all first element numbers are unique within the set, and together form a
progression of consecutive numbers starting at 1 up to the number of elements found in the set.
64 Specifically, bags are sets composed of ordered pairs where the first element (a.k.a. the domain) is an object
of the type specified for the bag, and the second element (a.k.a. the range) is a natural number indicating the
number of occurrences of the first element within the bag.

219

the usage of these operators: “dom “Andy, Bob, Karyn, Andy‘”, which returns the set

“{Andy, Bob, Karyn}” (i.e., the domain of the bag); and ““Andy‘ ≈ “Bob, Karyn‘”, which

returns the bag ““Andy, Bob, Karyn‘” (i.e., the union of the two bags).

A.2.6 Schemas

Schemas are representations that specify states and their transitions. As shown in the figure

below, schemas are graphically represented as a horizontally divided box where the upper

half section shows the declaration of objects, and the lower half section shows the

propositions that characterize the state of these objects.

This schema is named CounterSchema. It defines a single object counter of type natural

number, and a proposition indicating that this object is equal or greater than 0 (strictly

speaking, this property is implicit in the definition of counter as a natural number; however,

it is added to exemplify the usage of propositions in a schema).

By itself, this schema is not very useful, since it only declares an object. However,

schemas can be included as part of other schemas to enrich their state and provide for more

complex behaviour. As shown below, the schema CounterSchema is included as part of the

state of the schema MultiplySchema. Note that the name of the schema CounterSchema in

this definition is preceded by the symbol D. This symbol indicates that all objects in the

included schema have a state before and during the execution of the schema, and a state

after the execution of the schema. In this case, it indicates that there is a variable counter

holding the value of the variable before and during the execution of the schema

MultiplySchema, and a variable counter’ holding the value of the variable counter after the

execution of the schema (that is, the decorator prime (’) indicates the state of a variable

after the execution of a schema).

220

The overall purpose of this schema is to multiply two numbers, and to keep count of how

many multiplications it has performed. To that end, two objects are defined as the numbers

that are provided for multiplication (the real numbers number1? and number2?), one object

for holding the result of the multiplication (result!, which is also a real number), and two

objects for keeping track of the number of times that this multiplication has been performed

(the natural numbers counter and counter’, which were added through the definition

DCounterSchema). As implied, the question mark (?) is a decorator indicating that an

object is an input to a schema, and the exclamation point (!) indicates that an object is an

output from the schema.

The second part of the schema defines the propositions characterizing the state of the

schema. There are two propositions in the above schema: the first proposition indicates

that the object result! equals the product of the numbers number1? and number2?, and the

second proposition indicates that the number of times that a multiplication has been done is

incremented by 1 (specifically, that the recorded count after this transition (given by the

object counter’) is equal to the current count (given by counter) plus 1).

A.2.7 Axiomatic descriptions

Axiomatic descriptions are notations that introduce variables and their constraints. As

shown below, axiomatic descriptions are divided in two halve sections, where the upper

half indicates the objects being introduced (and their types), and the lower half section

(which is optional) indicates the constraints of the objects declared in the upper section.

221

The object declared in this axiom definition is labelled multiply. This object is defined as a

function relationship between the two real numbers and a third real number. Functions are

specialized relations, since they denote the unique mapping between two objects (in this

case, a pair of real numbers to another real number). As indicated in the constraints part of

the axiom, the function multiply multiplies the numbers number1 and number2 and makes

this multiplication the mapped value of the function (i.e., the resulting real number).

It is worth noting that one of the main differences between schemas and axiom definitions

is that of state: while schemas are capable of preserving state (e.g., keeping track of how

many times a multiplication has been done) axiom definitions are not.

A.3 The Object-Z Specification Language

Object-Z extends the Z specification language to incorporate object-oriented notions, such

as classes, inheritance and polymorphism. The following sections describe these notions.

A.3.1 Classes

Classes are the basic building blocks in Object-Z definitions. Classes contain three types of

schemas: a state schema that defines all objects making up the state of the class; an

initializing schema that specifies the initial constraints of state objects; and various

operation schemas (or methods) that define the state transitions available to instances of the

class.

The class shown below (which is labelled MultiplyClass) illustrates these schemas. The

first schema (which does not have a name) is the state schema; this schema defines the

natural number “counter” as the only object in the class. The second schema (which is

labelled INIT) is the initializing schema; it specifies the initial value of counter as equal to

zero. Lastly, this class defines a single operation labelled multiply, which is identical in

222

purpose to the schema MultiplySchema presented earlier: it takes the numbers number1?

and number2? as input, specifies that the multiplication of these numbers is equal to the

output object result!, and then increments the value of the object counter by one.

In addition, this class specifies a visibility list (i.e., ¡, which is shown immediately

underneath the class name) indicating the methods and objects that are publicly accessible

outside the class, which in this case is the method multiply.

A.3.2 Inheritance

Classes can reuse and specialize the properties of other classes by using inheritance. The

class AddAndMultiplyClass (shown below) is defined as a subclass of MultiplyClass, as

indicated by the label underneath the visibility list.

223

This class specifies two methods, where the first is labelled add; this method is similar to

the inherited method multiply except that it add rather than multiply its input numbers. The

second method, which is labelled random, illustrates how an operation can be modelled

based on other operations (in this case, add and multiply). This definition shows the use of

the angelic choice operator (), which specifies the invocation of the method random

results in the state transition specified by either the method add or the method multiply. In

addition to angelic choice there are other operators in Object-Z, such as the conjunction

operator (∧), which combines the characteristics of operations as if they were one, and the

sequential composition operator (;), which concatenates operations by linking the output

objects of one operation to the input objects of the next.

Class inheritance can also be specified using the class union operator (U). In brief, this type

of inheritance generates a new type whose identity is the union of the properties of the

types being related by the operator. For example, the object definition “tarzan: Ape U

Man” indicates that the object tarzan has as its type both the types Man and Ape.

A.3.3 Polymorphism

Type polymorphism is the object-oriented characteristic that allows manipulating objects of

different classes using the type of a common superclass. Object-Z defines polymorphic

types using the polymorphism operator s. The usage of this operator is illustrated in the

224

class OperationsClass (shown below), which specifies the object operations as a set of

objects of type (or subtype) MultiplyClass. That is, this set can include objects of type

MultiplyClass or any of its subclasses (e.g., AddAndMultiplyClass).

This class also defines the operation multiplyAll, which shows how the conjunctive operator

(and in general any of the previously shown operators) can be applied to all the elements in

a set. In this case, the conjunction operator indicates that all objects in the set operations

conjointly invoke their multiply operation.

A.4 Selected Z and Object-Z Notations

After showing in the previous sections the main characteristics of the Z and Object-Z, this

section presents a brief glossary of the symbols from these language specifications that

were used in this thesis.

Numbers

N, N1 The set of natural numbers (starting at zero, at one).

R The set of real numbers.

=, Î Equality and inequality.

<, ¯, >, ˘ Numeric comparators.

Logic

¬ Negation.

∀ Universal qualifier.

225

∃, ∃1 Existential qualifier.

∧, ∨ Conjunction and disjunction.

�, ⇔ Implication and bi-implication.

Sets

{…} Set definition.

∅, {} Empty set.

∪, ∩ Set union and intersection.

/ Set difference.

⊆, ⊂, ⊄ Subset, proper subset, not a subset.

∈,∉ Set membership and non-membership.

× Cartesian product.

Cardinality (number of elements).

P, P1 Power set (zero or more elements, at least one element).

Relations

dom, ran Domain and range of a function.

f, ß Function and partial function.

Sequences

„…Ò Sequence definition.

seq, seq1 Sequence declaration (zero or more elements, at least one element).

„ Ò Empty sequence.

head, last First and last element in a sequence.

226

front, tail Sequence without the first and last elements in a sequence.

^ Concatenation.

Bags

“…‘ Bag definition.

bag Bag declaration.

“ ‘ Empty bag.

≈ Bag union.

Definitions and Declarations

== Definition.

Í Schema definition.

Object-Z

self Object self reference.

INIT Initialization method name.

s Polymorphism operator.

¡ Visibility operator.

 Angelic choice.

; Sequential composition.

¶ Conjunction.

U Class union.

